

Grid Engine at GridKa HEPiX Spring 2015, Oxford

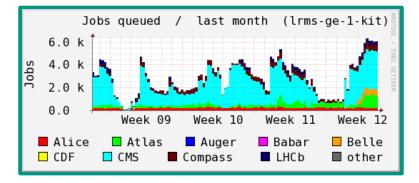
Manfred Alef

STEINBUCH CENTRE FOR COMPUTING – SCC

Compute Farm at GridKa

Compute Farm at GridKa

Dimensions of the compute farm


- HS06: 145,805
- WNs: 611
- Job slots: 12,357
- Number of jobs (2014): 23 M Multi-core: 760 K
- Average job runtime: 4:40 h

Multi-VO support

 Alice (23% share), Atlas (33%), Auger, BaBar, Belle II, CMS (13%), Compass, LHCb (15%), ...

Very high cluster utilization

Most often waiting jobs in the queue

Grid Engine (Univa) since mid 2012 (until 2017)

Has replaced PBS Professional

Experiences (1)

- Very stable
 - \rightarrow No crashes (1 unscheduled downtime at the beginning, see next slide)
 - No hanging daemons
 - No black hole issues
 - → ...
- Very fast scheduler
- Flexible fair-share policies
- Very quick support team

Experiences (2)

- Documentations, admin guide, manpages, logfiles, error messages, ... often very hard to read, a lot of developer's slang
 - Several tickets have been filed so far like
 'Please translate that error message to plain English'
- Unscheduled draining when an undocumented CRL file had expired
 - See talk about the Certificate Security Protocol (CSP) by Andreas Haupt https://indico.cern.ch/event/199025/session/5/contribution/18/material/slides/0.pdf
 - Diagnostic commands from Admin Guide not helpfull because they were cut at the right edge of the printable area (fixed in the newest release 8.2)

Experiences (3)

Bizarre formatted XML output

<UA_name>cpu</UA_name> <UA_value>103926.000000</UA_value>

- No true CPU normalization
 - Grid Engine supports configuration of usage_scaling factor per host
 - CPU and walltime usage of running jobs are displayed correct
 - Job accounting doesn't take care of the normalization factors
 - No adjustments of runtime limits corresponding to slot performance

Multi-core job usage

- Atlas and CMS: continously submitting multi-core jobs since around 1 year
- No interest so far from other VOs

10

2015-03-27

Our goal

• Enable multi-core job support with minimal wasting of resources

No separate queue

- Jobs request number of slots by adding pe switch
 - Parallel environment (PE) has been configured to support multi-core jobs
 - Any number of slots supported (less than or equal to maximal number of slots per host)

Dynamic scheduling

- No sub-clusters
 - Neither VO nor multi-core specific
 - Neither static nor dynamic partitioning
- Multi-core jobs can share WN with single-core jobs
 - Not necessary to drain a whole WN just to boost a single multi-core job

How prompt does a multi-core job start?

 By default (without draining) it most probably won't start within a reasonable timeframe because all slots are continuously occupied by single-core jobs

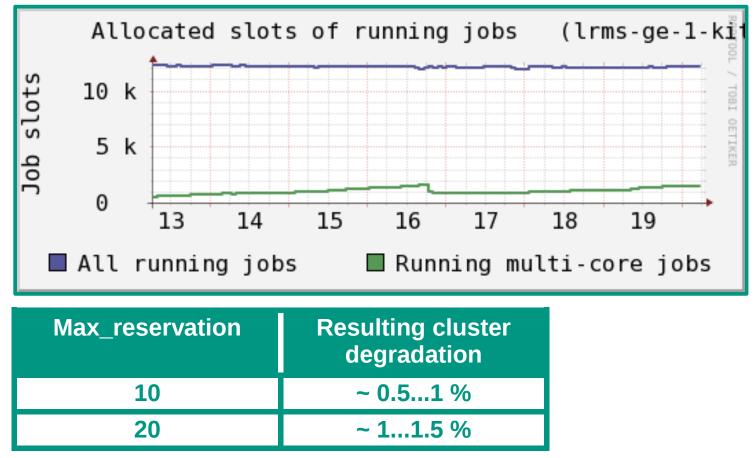
Resource reservations

- Max_reservation set to ~10
 - Per reservation: up to 7 slots idling to boost a pending 8-core job
 - Max_reservation setting controls the number of pending multi-core jobs with scheduled reservations; <u>no limit on the number of running multi-core jobs</u>

Multi-core jobs must use extra option:

- Extra submit option:
 - → qsub -R y
- Alternative (e.g. per cron job):
 - → qalter -R y \$list_of_pending_multicore_jobs

- Resulting degraded cluster utilization while reservations are scheduled
 - Again and again no waiting multi-core jobs in the queue
 - Wavelike submission of multi-core jobs detected
 - Slots of ending multi-core job become occupied by single-core jobs when no more multi-core jobs are waiting
 - ➔ Frequent reservations, and resulting degradation of cluster utilization



Almost no submitted jobs are declaring the expected runtime (and CPU normalization doesn't work as expected) ⇒ no efficient backfilling

 Resulting degraded cluster utilization when reservations become scheduled (8-core-jobs)

Observations from job monitoring

- Huge memory (RSS) consumption of some jobs
- Orphaned processes (PPID=1)
- Parallel processes in single-core jobs

- Testing Cgroups (1)
 - Configurations according to talk by Daniel Gruber https://indico.cern.ch/event/274555/session/14/contribution/12/material/slides/0.pdf
 - 4 WNs (32 slots)
 - Extended by 10 WNs, including 3 very fat nodes, for bug hunting
 - Job encapsulation:
 - Memory isolation
 - Extra submit option:
 - qsub -1 m_mem_free=\$rss_limit
 - Cpuset
 - Extra submit option:
 qsub -mbind nlocal

• Testing Cgroups (2)

- Job encapsulation works as expected
 - No orphaned processes detected by fabric monitoring
 - Parallel applications cannot get more CPU slots than requested
 - However, memory limitations not fully tested so far
 - Observations at DESY (see site report by Peter ven der Reest): Bugs of features?

- Testing Cgroups (3)
 - Crashes (possibly caused by bug of current kernel release)
 - When many jobs running on a node end at the same time?
 - Tests at GridKa
 - 20 jobs killed at the same time
 - (pkill -9 -u alef, qdel -f -u alef):
 - Okay
 - WN re-configured with huge number of slots,
 - ~ 100 jobs being killed at once
 - WN crashed immediately
 - Issue may become a showstopper :-(
 - Not observed in grid production mode so far (including some fat nodes with 48 or 64 slots)

- Testing Cgroups (4)
 - Issues with Cgroups have also been reported by other sites
 - For instance, see DESY site report https://indico.cern.ch/event/346931/session/1/contribution/75/material/slides/0.pdf
 - Can sites share information?

Conclusions

- 2 1/2 years of Grid Engine at GridKa
- Fully satisfying
 - Very stable operation
 - Few week points, but no showstopper
- Flexible multi-core job support
- Some open questions about configuration and enabling of Cgroups

Questions, Comments

