A TeV-scale model for neutrino mass, DM and baryon asymmetry

Shinya KANEMURA (University of Toyama) with

富山大学理学部

Mayumi Aoki (Tohoku U.) and Osamu Seto (Madrid University, Autonoma) arXiv:0807.0361

17. Sep, 2008 @Charged Higgs 2008, Uppsala

What is discussed

- Although the success of the SM, today we have definite reasons to consider new physics beyond the SM.
 - Neutrino oscillation
 - Evidence of Dark Matter
 - Baryon Asymmetry of the Universe
- In this talk, an extension of the SM is proposed, which can explain these phenomena with less unnatural fine tuning.
- The model predicts lots of interesting phenomenological features, in particular, in Higgs physics

Neutrino Oscillation

- Information from Data
 - Two Mass Scales $\Delta m_{sol}^2 \sim 8 \times 10^{-5} \, eV^2$
 - Mixing Angles

 $\Delta m_{atm}^{2} \sim 0.0021 \text{ eV}^{2}$ $\theta_{sol} \sim 0.553$ $\theta_{atm} \sim \pi/4$

- In the SM, such phenomenon cannot be explained
 - No Right-handed Neutrino
 - No Source for Majorana Masses
- New Physics
 - Seesaw
 - Quantum Effect by extended Higgs sectors

Seesaw

- Super Heavy RH Neutrino (M_{NR} ~ 10¹³⁻¹⁶GeV)
 - Hierarchy between $M_{\rm NR}$ and $M_{\rm D}$ generates that between $M_{\rm D}$ and tiny $m_{\rm v}~~$ (M $_{\rm D}$ $^{\sim}$ 100 GeV)

$$m_v = m_D^2 / M_{NR}$$

- Simple, compatible with GUT

- Problem? (or complain?)
 - Has the problem really been solved ?
 Hierarchy for hierarchy !
 - Introduction of super high scale
 - = far from experimental reach...

Quantum Effects

- Tiny v-Masses may come from loop effects
 - Zee (1980, 1985)
 - Zee-Babu
 - Krauss-Nasri-Trodden (2002)
 - Ma (2006),
- Merit
 - Super large mass scales are not necessary
 - Tiny neutrino masses are radiatively generated

No hierarchy problem

Physics at TeV: Testable at collider experiments

Krauss et al

Motivation of our model

Is it possible to extend the SM to include

- Neutrino Masses
- Dark Matter
- Baryon Asymmetry of the Universe

in the framework of a renormalizable field theory of at most TeV scale ?

- No more large mass scales
- No more unnatural fine tuning among coupling constants,...

We can construct such a model.

The Model

• TeV-scale RH neutrinos: N_R

- TeV-scale RH neutrinos: N_R
- Extended Higgs: 2HDM + gauge singlets (η^0, S^+)
 - Tiny v-mass: 3-loop (N_R , η^0 , S⁺, H⁺, e_R)
 - DM candidate
 - EW Baryogenesis [1st Order PT, Source of CPV](2HDM)

(η⁰)

Type-X Yukawa coupling

In our model, a light H⁺ (m_H +=100 GeV) is required to satisfy v-data. In the type II 2HDM, such a light H+ is excluded because of $b \rightarrow s\gamma$ result

Alternative Yukawa coupling (type-X) under the additional \tilde{Z}_2 parity Glashow -Weinberg

Some people call it as Model-IV (Berger et al), or Model-II' (Grossmann), ...

$$\mathcal{L}_Y = -y_{e_i} \overline{L}^i \Phi_1 e_R^i - y_{u_i} \overline{Q}^i \tilde{\Phi}_2 u_R^i - y_{d_i} \overline{Q}^i \Phi_2 d_R^i + \text{h.c.}$$

– $\Phi_{\rm 1}$ only couples to Leptons

Type-X 2HDM

– Φ_2 only couples to Quarks

Discriminative Higgs phenomenology

b→sγ

NLO by Ciuchini et al '98

Boltmati/Greub Chetyrkin/Misiak/Munz Kagan/Neubert

The NLO calculation and the data

Type-X scenario is free from the b-s γ result even m_H+=100GeV

Lagrangian

 $SU(3) \times SU(2) \times U(1) \times Z_2 \times \tilde{Z}_2$ $Z_2 \text{ (exact) : to forbid tree v-Yukawa and to stabilize DM}$ $Z_2 \text{ even(2HDM)} + Z_2 \text{ odd}(S^+, \eta^0, N_R^\alpha)$ $Z_2 \text{ (softly-broken): to avoid FCNC}$

RH neutrinos

$$\mathcal{L}_{Y} = -\sum_{\alpha=1}^{2} \sum_{i,j=1}^{3} h_{i}^{\alpha} (e_{R}^{i})^{c} N_{R}^{\alpha} S^{-} + \sum_{\alpha=1}^{2} m_{N}^{\alpha} N_{\alpha}^{c} N_{\alpha} + \text{h.c.}.$$

Neutrino Mass (radiative $vv\phi\phi$ generation)

Tree level neutrino Yukawa is forbidden by exact Z₂ Neutrino mass matrix is generated at the 3-loop level.

Neutrino Masses

$$M_{ij} = \sum_{\alpha=1}^{2} C^{\alpha}_{ij} F(m_H, m_S, m_{N^{\alpha}_R}, m_{\eta})$$

Universal scale is determined by the 3loop function factor F

$$F(m_{H^{\pm}}, m_{S^{\pm}}, m_{N_{R}}, m_{\eta}) = \left(\frac{1}{16\pi^{2}}\right)^{3} \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}}$$

$$\times \int_{0}^{\infty} dx \left[x \left\{ \frac{B_{1}(-x, m_{H^{\pm}}, m_{S^{\pm}}) - B_{1}(-x, 0, m_{S^{\pm}})}{m_{H^{\pm}}^{2}} \right\}^{2} \right]$$

$$\times \left(\frac{m_{N_{R}}^{2}}{x + m_{N_{R}}^{2}} - \frac{m_{\eta}^{2}}{x + m_{\eta}^{2}} \right) , \quad (m_{S^{\pm}}^{2} \gg m_{e_{i}}^{2}), \quad (6)$$

$$C_{ij}^{\alpha} = 4\kappa^2 \tan^2 \beta (y_{\ell_i}^{\rm SM} h_i^{\alpha}) (y_{\ell_j}^{\rm SM} h_j^{\alpha})$$

We can describe all the neutrino data (tiny masses and angles) without unnatural assumption among mass scales

Thermal Relic Abundance of η^{0}

 Ωh^2

WMAP data $\Omega_{
m DM} h^2 \simeq 0.113$

Candidate for cold DM: η or N_R (heavy) Annihilation Cross Sections determine the abundance

$$\Omega_{\eta}h^{2} = 1.1 \times 10^{9} \frac{(m_{\eta}/T_{d})}{\sqrt{g_{*}}M_{P}\langle\sigma v\rangle}\Big|_{T_{d}} \text{ GeV}^{-1}$$
Both bb and $\tau\tau$
included
$$m_{\eta} \text{ would be around 49-64 GeV}$$

$$\eta \text{ can be a DM candidate}$$

Electroweak Baryogenesis

$$n_B/s = (9.2 \pm 1.1) \times 10^{-11} (WMAP)$$

Sakharov's 3 conditions:

Baryon number violation C, and CP violation Departure from thermal equilibrium

EW baryogenesis:

Strong 1st Order Phase Transition
= rapid sphaleron decoupling
in the broken phase

$$\frac{\varphi_c}{T_c}\gtrsim 1$$

$$\begin{split} V_{\text{eff}} \simeq D(T^2 - T_0^2)\varphi^2 - \frac{E}{T}\varphi^3 + \frac{\lambda_T}{4}\varphi^4 \\ \frac{\varphi_c}{T_c} \left(= \frac{2E}{\lambda_{T_c}} \right) \gtrsim 1 \end{split}$$

Strong 1st Order Phase Transition

Condition for strong 1st OPT

We require non-decoupling effect in the Higgs sector. mA> 350 GeV (Mass difference between A and H⁺)

Mass Spectrum

DM physics

Physics of η

– h is the SM-like Higgs boson but decays into $\eta\eta$

B(h \rightarrow ηη) = 50% (37%) for m_η=48 (57) GeV

Testable via the invisible Higgs decay at the LHC

– η from the halo can basically be detected at the direct DM search (CDMS, XMASS)

Non-decoupling property

EWBG requires a large mass

splitting between m_ and m_H_ $m_A^2 - m_{H^\pm}^2 = (\lambda_4 - \lambda_5) v^2$

Strong 1st Order EWPT

Deviation in hhh-coupling by 20-30 %

Testable at the ILC

Type-X Yukawa coupling

Φ_1 only couples to Leptons Φ_2 only couples to Quarks

Decay of H, A, H+ completely different

Light Higgs scenario: Production at the LHC

SK, Yuan Cao, SK, Yuan Baryaev et al

$$\begin{array}{c} pp \rightarrow W^{\pm} \rightarrow HH^{+}(AH^{+}) \\ HH^{+} \rightarrow (\tau\tau)(\tau\nu) \\ AH^{+} \rightarrow (W^{\pm}H^{\mp})(\tau\nu) \rightarrow jj(\tau\nu)(\tau\nu) \\ (MSSM) \quad pp \rightarrow AH^{+} \rightarrow (b\bar{b})\tau^{+}\nu \rightarrow (b\bar{b})(\pi^{+}\bar{\nu}\nu) \\ Pions from H^{+} \rightarrow tv are harder than those from W^{+} \rightarrow tv \\ High energy pions \\ Bullock, Hagiwara, Martin \\ \end{array}$$

Z₂-odd charged scalar S⁺
 Produced in pair

$$e^+e^- \rightarrow S^+S^-$$

Signal should be hard pions with large missing energy

$$S^{\pm} \to H^{\pm}\eta \to \tau^{\pm}\nu\eta \to \pi^{\pm}\nu\eta$$

 Indirect quantum effect can be large

SK, Lin, Kasai, Okada, Yuan

m_{s2} (GeV)

Summary

- Phenomena, which the SM cannot solve
 - Neutrino oscillation
 - Dark Matter
 - Baryon Asymmetry of Universe
- We construct a model to solve these problems by TeVscale physics (Φ₁, Φ₂, η, S⁺, N_R)
- The model gives many discriminative predictions in Higgs physics , LFV and DM physics
 - Invisible decay of h
 - Type-X Yukawa coupling
 - Light H+ (H, S) scenario
 - Non-decoupling property
- Testable at experiments (LHC, ILC)
- DM also testable by direct and indirect search
- Further phenomenological study is underway

Mass and coupling

Masses are determined by vev and M (or $\mu_{S,\eta}$) $m_h^2 = O(\lambda) v^2$ (SM like: $sin(\beta - \alpha) = 1$) $m_H^2 = M^2 + O(\lambda) v^2$ $m_A^2 = M^2 + O(\lambda) v^2$ $m_{H^+}^2 = M^2 + O(\lambda) v^2$ $M = \frac{|\mu_{12}|}{\sqrt{\sin\beta\cos\beta}}$

Soft breaking scale for $ilde{Z}_2$

$$m_{S^{+}}^{2} = \mu_{S^{+}}^{2} + O(\rho) v^{2}$$

$$m_{\eta}^{2} = \mu_{\eta}^{2} + O(\sigma) v^{2}$$

CP violating phases

- In Higgs potential m_3^2 and λ_5 are complex, that cause CP violation.
- Although the CP phase is crucial for generating baryon number, it does not affect much in the discussions on m_v , DM and 1st Order EWPT.
- We neglect it for simplicity
- Later comment on the case including it.

Neutrino Masses from Higgs Sector

Quantum Effect by EW (TeV) physics

- Zee Model D+D+S⁺ No RH-v S+ carries L=2 $m_{ij}=f_{ij}(m_{e_j}^2-m_{e_i}^2)\mu \cot \beta \frac{1}{16\pi^2} \frac{1}{m_{s_1}^2-m_{s_2}^2} \ln \frac{m_{s_1}^2}{m_{s_2}^2}$ 1-loop induced
- Krauss et al. Model D+S⁺+S⁺+NR

Two generation of N_R explains the mixing

Cheung, Seto

Physical States

- Exact Z₂ parity: even and odd states do not mix
- Masses of 2HDM fields can be diagonalized by the mixing angles α and β as usual.

$$\Phi_{i} = \begin{bmatrix} w_{i}^{\pm} \\ \frac{1}{\sqrt{2}}(v_{i} + h_{i} + iz_{i}) \end{bmatrix} \qquad \begin{bmatrix} w_{1}^{\pm} \\ w_{2}^{\pm} \end{bmatrix} = \begin{bmatrix} \cos\beta - \sin\beta \\ \sin\beta & \cos\beta \end{bmatrix} \begin{bmatrix} w^{\pm} \\ H^{\pm} \end{bmatrix}$$
$$\begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix} = \begin{bmatrix} \cos\alpha - \sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} H \\ h \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = \begin{bmatrix} \cos\beta - \sin\beta \\ \sin\beta & \cos\beta \end{bmatrix} \begin{bmatrix} z \\ A \end{bmatrix}$$

• Z_2 -even physical states h (SM like Higgs) for $sin(\beta-\alpha)=1$ $g_{hWW}=1$ H, A, H⁻ (Extra scalars) $g_{HWW}=0$ Z_2 -odd states η , S⁺, N_R^{α}

Symmetries of the model

- Gauge Symmetries SU(3) XSU(2)XU(1)
- Discrete symmetry Z₂ (Exact)
- In general 2HDM $\Phi_1, \Phi_2 \rightarrow FCNC$! Another discrete symmetry is necessary: \widetilde{Z}_2 (Softly broken) $\widetilde{Z}_2: \Phi_1 \rightarrow + \Phi_1, \qquad \Phi_2 \rightarrow - \Phi_2, \qquad e_R \rightarrow + e_R, \ L_1 \rightarrow + L_1$

Only Φ_1 couples to charged leptons.

This can be softly broken.

	Q^i	u_R^i	d_R^i	L^{i}	e_R^i	Φ_1	Φ_2	S^{\pm}	η	N_R^{lpha}
Z_2 (exact)	+	+	+	+	+	+	+	1	_	—
\tilde{Z}_2 (softly broken)	+	_	_	+	+	+	_	+	_	+

Mass and mixing

$$M_{ij} = U_{is} (M_{\nu}^{\text{diag}})_{st} (U^{T})_{tj}$$
$$m_{\nu}^{\text{diag}} \equiv \begin{bmatrix} 0 & 0 & 0 \\ 0 & \sqrt{\Delta m_{\text{solar}}^{2}} & 0 \\ 0 & 0 & \sqrt{\Delta m_{\text{atom}}^{2}} \end{bmatrix} U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i\tilde{\alpha}} & 0 \\ 0 & 0 & e^{i\tilde{\beta}} \end{bmatrix}$$

$$C_{ij}^{\alpha} = 4\kappa^2 \tan^2 \beta (y_{\ell_i}^{\rm SM} h_i^{\alpha}) (y_{\ell_j}^{\rm SM} h_j^{\alpha})$$

Set	$ h_e^1 $	h_e^2	h^1_μ	h_{μ}^2	$h_{ au}^1$	$h_{ au}^2$	$B(\mu \rightarrow e\gamma)$
Α	1.2	1.2	-0.011	0.025	-0.0015	0.00070	$5.3 imes 10^{-12}$
В	1.2	1.35	0.0037	0.022	-0.00075	0.0012	4.5×10^{-12}

 $m_{H+}=m_{H}=m_{S}=100$ GeV, $m_{\eta}=50$ GeV, $m_{NR}^{-1}=m_{NR}^{-2}=3.5$ TeV Set A (B): κ tan β =36 (42) and $U_{e3}=0$ (0.18).

Numerical Evaluation

1. LFV data N_R must be O(1) TeV2. v dataThen, $m_{H^+} < O(100)$ GeV3. LEP direct search on H⁺ $m_{H^+} > 90$ GeV4. LEP precision measurement [ρ parameter] $sin(\beta-\alpha) = 1, m_H^+=m_H$

From natural assumption $\kappa \tan\beta < O(10)$, $h_e^{\alpha} = O(1)$, possible parameters are uniquely determined as $sin(\beta-\alpha) = 1$ (h is the SM-like Higgs), $m_{H^+}=m_H=100$ GeV, $m_S=O(100)$ GeV $m_N=a$ few TeV