A TeV-scale model for neutrino mass, DM and baryon asymmetry

Shinya KANEMURA (University of Toyama)

with

富山大学理学部

Mayumi Aoki (Tohoku U.) and Osamu Seto (Madrid University, Autonoma) arXiv:0807.0361

17. Sep, 2008 @Charged Higgs 2008, Uppsala

What is discussed

- Although the success of the SM, today we have definite reasons to consider new physics beyond the SM.
	- Neutrino oscillation
	- Evidence of Dark Matter
	- Baryon Asymmetry of the Universe
- In this talk, an extension of the SM is proposed, which can explain these phenomena with less unnatural fine tuning.
- The model predicts lots of interesting phenomenological features, in particular, in Higgs physics

Neutrino Oscillation

- Information from Data
	- $-$ Two Mass Scales $\Delta m_{sol}^2 \simeq 8 \times 10^{-5}$ eV²
	- Mixing Angles

 $\Delta \mathsf{m}_{\mathsf{atm}}^2$ \sim 0.0021 eV² θ_{sol} ~ 0.553 θ_{atm} $\sim \pi/4$

- In the SM, such phenomenon cannot be explained
	- No Right-handed Neutrino
	- No Source for Majorana Masses
- New Physics
	- Seesaw
	- Quantum Effect by extended Higgs sectors

Seesaw

- Super Heavy RH Neutrino $(M_{NR} \sim 10^{13-16} GeV)$
	- $-$ Hierarchy between M_{NR} and M_{D} generates that between $\mathsf{M}^{}_{\mathsf{D}}$ and tiny $\mathsf{m}^{}_{\mathsf{v}}$ (M_D $^{\thicksim}$ 100 GeV)

$$
m_v = m_D^2 / M_{NR}
$$

– Simple, compatible with GUT

- Problem? (or complain?)
	- Has the problem really been solved ? Hierarchy for hierarchy !
	- Introduction of super high scale
		- = far from experimental reach…

Quantum Effects

- Tiny v -Masses may come from loop effects
	- Zee (1980, 1985)
	- Zee-Babu
	- Krauss-Nasri-Trodden (2002)
	- Ma (2006), …..
- Merit
	- Super large mass scales are not necessary
	- Tiny neutrino masses are radiatively generated

No hierarchy problem

Physics at TeV: Testable at collider experiments

Krauss et al

Motivation of our model

Is it possible to extend the SM to include

- Neutrino Masses
- Dark Matter
- Baryon Asymmetry of the Universe

in the framework of a renormalizable field theory of at most TeV scale ?

- No more large mass scales
- No more unnatural fine tuning among coupling constants,…

We can construct such a model.

The Model

• TeV-scale RH neutrinos: N_R

- TeV-scale RH neutrinos: N_R
- Extended Higgs: 2HDM + gauge singlets (η^0, S^+)
	- $-$ Tiny v-mass: 3-loop $(\mathsf{N}_{\mathsf{R}},\, \eta^0\, ,$ S⁺, H⁺, e_R)
	- DM candidate (η^0)
	- $-$ EW Baryogenesis [1st Order PT, Source of CPV](2HDM)

Type-X Yukawa coupling

In our model, a light H^+ (m_H+=100 GeV) is required to satisfy v-data. In the type II 2HDM, such a light H+ is excluded because of b → sγ result

Alternative Yukawa coupling (type-X) under the additional Z_2 parity ~
7. Glashow -Weinberg

Type-X 2HDM Some people call it as Model-IV (Berger et al), or Model-II' (Grossmann), ...

$$
\mathcal{L}_Y=-y_{e_i}\overline{L}^i\Phi_1e_R^i-y_{u_i}\overline{Q}^i\tilde{\Phi}_2u_R^i-y_{d_i}\overline{Q}^i\Phi_2d_R^i+\text{h.c.}
$$

- $-\Phi_1$ only couples to Leptons
- Φ ₂ only couples to Quarks

Discriminative Higgs phenomenology

b→sγ

NLO by Ciuchini et al '98

Boltmati/Greub Chetyrkin/Misiak/Munz Kagan/Neubert

The NLO calculation and the data

Type-X scenario is free from the b-s γ result even m_H +=100GeV

Lagrangian

 $SU(3) \times SU(2) \times U(1) \times Z_2 \times Z_2$ Z_2 (exact) : to forbid tree v-Yukawa and to stabilize DM $\frac{1}{2}$ (softly-broken): to avoid FCNC Z_2 even(2HDM) + Z_2 odd(S⁺, η^0 , $\mathsf{N_R}^\alpha$)

$$
V = -\mu_1^2 |\Phi_1|^2 - \mu_2^2 |\Phi_2|^2 - (\mu_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.})
$$

\n
$$
+ \lambda_1 |\Phi_1|^4 + \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2
$$

\n
$$
+ \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \left\{ \frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right\}
$$

\n
$$
+ \mu_s^2 |S|^2 + \lambda_s |S|^4 + \frac{1}{2} \mu_{\eta} \eta^2 + \lambda_{\eta} \eta^4 + \xi |S|^2 \eta^2
$$

\n
$$
+ \sum_{a=1}^2 \left\{ \rho_a |\Phi_a|^2 |S|^2 + \sigma_a |\Phi_a|^2 \frac{\eta^2}{2} \right\}
$$

\n
$$
+ \sum_{a,b=1}^2 \left\{ \kappa \epsilon_{ab} (\Phi_a^c)^{\dagger} \Phi_b S^- \eta + \text{h.c.} \right\}.
$$

\nInteraction

RH neutrinos

$$
\mathcal{L}_Y = -\sum_{\alpha=1}^2 \sum_{i,j=1}^3 h_i^{\alpha} (e_R^i)^c N_R^{\alpha} S^{-} + \sum_{\alpha=1}^2 m_N^{\alpha} N_{\alpha}^c N_{\alpha} + \text{h.c.}.
$$

Neutrino Mass $(radiative v$ $\psi \phi$ generation)

Neutrino mass matrix is generated at the 3-loop level. Tree level neutrino Yukawa is forbidden by exact Z_2

Neutrino Masses

$$
M_{ij} = \sum_{\alpha=1}^{2} C_{ij}^{\alpha} F(m_H, m_S, m_{N_R^{\alpha}}, m_{\eta})
$$

Universal scale is determined by the 3 loop function factor F

$$
F(m_{H^{\pm}}, m_{S^{\pm}}, m_{N_R}, m_{\eta}) = \left(\frac{1}{16\pi^2}\right)^s \frac{(-m_{N_R} v^2)}{m_{N_R}^2 - m_{\eta}^2}
$$

$$
\times \int_0^{\infty} dx \left[x \left\{ \frac{B_1(-x, m_{H^{\pm}}, m_{S^{\pm}}) - B_1(-x, 0, m_{S^{\pm}})}{m_{H^{\pm}}^2} \right\}^2 \right]
$$

$$
\times \left(\frac{m_{N_R}^2}{x + m_{N_R}^2} - \frac{m_{\eta}^2}{x + m_{\eta}^2} \right) \right], \quad (m_{S^{\pm}}^2 \gg m_{e_i}^2), \qquad (6)
$$

$$
C_{ij}^{\alpha} = 4\kappa^2 \tan^2 \beta (y_{\ell_i}^{\rm SM} h_i^{\alpha})(y_{\ell_j}^{\rm SM} h_j^{\alpha})
$$

We can describe all the neutrino data (tiny masses and angles) without unnatural assumption among mass scales

Thermal Relic Abundance of η^0

 Ωh^2

 $\Omega_{\text{DM}} h^2 \simeq 0.113$ WMAP data

Candidate for cold DM: η or N_R (heavy) Annihilation Cross Sections determine the abundance

$$
\Omega_{\eta}h^2 = 1.1 \times 10^9 \left. \frac{(m_{\eta}/T_d)}{\sqrt{g_*}M_P \langle \sigma v \rangle} \right|_{T_d}
$$
GeV⁻¹
Both bb and $\tau \tau$
included
 η could be around 49-64 GeV
of can be a DM candidate

Electroweak Baryogenesis

$$
n_B/s = (9.2 \pm 1.1) \times 10^{-11} (WMAP)
$$

Sakharov's 3 conditions:

Baryon number violation C, and CP violation Departure from thermal equilibrium

EW baryogenesis:

Strong 1st Order Phase Transition = rapid sphaleron decoupling in the broken phase

$$
\boxed{\frac{\varphi_c}{T_c} \gtrsim 1}
$$

$$
V_{\text{eff}} \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4
$$

$$
\frac{\varphi_c}{T_c} \left(= \frac{2E}{\lambda_{T_c}} \right) \gtrsim 1
$$

Strong 1st Order Phase Transition

Condition for strong 1st OPT $\frac{\varphi_c}{T_c}$ $\left(= \frac{2E}{\lambda_T} \right) \geq 1$ $\lambda_T \sim \frac{2m_h^2}{v^2}$ 400 $E = \frac{1}{12\pi v^3}(6m_W^3 + 3m_Z^3 + m_H^3 + m_A^3 + 2m_{H\pm}^3)$ (GeV) additional contributions

SM only satisfies this for a light Higgss m_h < 50-60 GeV (Excluded)

In our model, the condition can be satisfied for mh=120GeV

We require non-decoupling effect in the Higgs sector. mA> 350 GeV (Mass difference between A and H⁺)

Mass Spectrum

DM physics

Physics of η

 $-$ h is the SM-like Higgs boson but decays into $\eta\eta$

 $B(h\rightarrow\eta\eta) = 50\%$ (37%) for $m_n=48$ (57) GeV

Testable via the invisible Higgs decay at the LHC

 η from the halo can basically be detected at the direct DM search (CDMS, XMASS)

Non-decoupling property

EWBG requires a large mass

splitting between m_A and m_{H^+}

Strong 1st Order EWPT

Deviation in hhh-coupling by 20-30 %

Testable at the ILC

Higgs mass [GeV]

Type-X Yukawa coupling

Φ_1 only couples to Leptons Φ ₂ only couples to Quarks

Decay of H, A, H+ completely different

Light Higgs scenario: Production at the LHC

SK, Yuan Cao, SK, Yuan Baryaev et al

$$
(MSSM) \n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\hline
$$

• Z₂-odd charged scalar S⁺

– Produced in pair

$$
e^+e^- \to S^+S^-
$$

– Signal should be hard pions with large missing energy

$$
S^{\pm} \to H^{\pm}\eta \to \tau^{\pm}\nu\eta \to \pi^{\pm}\nu\eta
$$

– Indirect quantum effect can be large

SK, Lin, Kasai, Okada, Yuan

Summary

- Phenomena, which the SM cannot solve
	- Neutrino oscillation
	- Dark Matter
	- Baryon Asymmetry of Universe
- We construct a model to solve these problems by TeVscale physics $(\Phi_1, \Phi_2, \eta, S^*, N_R)$
- The model gives many discriminative predictions in Higgs physics , LFV and DM physics
	- Invisible decay of h
	- Type-X Yukawa coupling
	- Light H+ (H, S) scenario
	- Non-decoupling property
- Testable at experiments (LHC, ILC)
- DM also testable by direct and indirect search
- Further phenomenological study is underway

Mass and coupling

Masses are determined by vev and M (or $\mu_{S,\eta}$) $m_h^2 =$ $O(\lambda) v^2$ (SM like: $sin(\beta-\alpha)=1$) $m_{\rm H}^2 = M^2 + O(\lambda) v^2$ $m_A^2 = M^2 + O(\lambda) v^2$ $M = \frac{|\mu_{12}|}{\sqrt{\sin \beta \cos \beta}}$ $m_{H^{+}}^2$ = M² + O(λ) v²

Soft breaking scale for \overline{Z}_2

$$
m_{S+}^{2} = \mu_{S+}^{2} + O(\rho) v^{2}
$$

$$
m_{\eta}^{2} = \mu_{\eta}^{2} + O(\sigma) v^{2}
$$

CP violating phases

- In Higgs potential m_3^2 and λ_5 are complex, that cause CP violation.
- Although the CP phase is crucial for generating baryon number, it does not affect much in the discussions on m_v , DM and 1st Order EWPT.
- We neglect it for simplicity
- Later comment on the case including it.

Neutrino Masses from Higgs Sector

Quantum Effect by EW (TeV) physics

- Zee Model $D+D+S^+$ No RH-ν S+ carries L=2 $m_{ij} = f_{ij}(m_{e_j}^2 - m_{e_i}^2)\mu \cot \beta \frac{1}{16\pi^2} \frac{1}{m_{S_i}^2 - m_{S_i}^2} \ln \frac{m_{S_1}^2}{m_{S_i}^2}$ 1-loop induced
- Krauss et al. Model D+S⁺+S⁺+NR

Z₂ symmetry 3-loop induced (More Natural for neutrino masses) N_R can be a DM candidate N_R and N_R $Z₂$ odd

Two generation of N_R explains the mixing

Zee

Cheung, Seto

Physical States

- Exact Z_2 parity: even and odd states do not mix
- Masses of 2HDM fields can be diagonalized by the mixing angles α and β as usual.

$$
\Phi_{i} = \begin{bmatrix} w_{i}^{\pm} \\ \frac{1}{\sqrt{2}}(v_{i} + h_{i} + iz_{i}) \end{bmatrix} \begin{bmatrix} w_{1}^{\pm} \\ w_{2}^{\pm} \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} w_{+}^{\pm} \\ H^{\pm} \end{bmatrix}
$$

$$
\begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} H \\ h \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} z \\ A \end{bmatrix}
$$

 \cdot $\Big($ Z₂-even physical states h (SM like Higgs) for $sin(\beta-\alpha)=1$ g_{hWW}=1 H, A, H for $sin(\beta-\alpha)=1$ $g_{hWW}=1$
 $g_{HWW}=0$ Z₂-odd states η , S⁺, N_R^{α}

Symmetries of the model

- Gauge Symmetries SU(3) XSU(2)XU(1)
- Discrete symmetry Z_2 (Exact)
- In general 2HDM Φ_1 , $\Phi_2 \rightarrow$ FCNC! Another discrete symmetry is necessary: Z_2 (Softly broken) $: \Phi_1 \rightarrow +\Phi_1, \qquad \Phi_2 \rightarrow -\Phi_2,$ $e_R \rightarrow + e_R$, $L_L \rightarrow + L_L$ \tilde{Z}

Only Φ_1 couples to charged leptons.

This can be softly broken.

Mass and mixing

$$
M_{ij} = U_{is} (M_{\nu}^{\text{diag}})_{st} (U^T)_{tj}
$$

$$
m_{\nu}^{\text{diag}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \sqrt{\Delta m_{\text{solar}}^2} & 0 \\ 0 & 0 & \sqrt{\Delta m_{\text{atom}}^2} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ 0 & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i\delta} & 0 \\ 0 & 0 & e^{i\delta} \end{bmatrix}
$$

$$
C_{ij}^{\alpha} = 4\kappa^2 \tan^2 \beta (y_{\ell_i}^{\rm SM} h_i^{\alpha}) (y_{\ell_j}^{\rm SM} h_j^{\alpha})
$$

 m_{H+} = m_{H} = m_{S} =100 GeV, m_{η} =50GeV, m_{NR}^{1} = m_{NR}^{2} =3.5 TeV Set A (B): κ tan β =36 (42) and U_{e3}=0 (0.18).

Numerical Evaluation

1. LFV data N_R must be $O(1)$ TeV 2. v data Then, $m_{H_{+}} < O(100)$ GeV 3. LEP direct search on H^+ m_{H+} > 90GeV 4. LEP precision measurement $[\rho]$ parameter] $sin(\beta-\alpha) = 1$, $m_{H}+m_{H}$

From natural assumption κ tan β <0(10), h_e^{α} = 0(1), possible parameters are uniquely determined as $sin(\beta-\alpha) = 1$ (h is the SM-like Higgs), m_{H+} = m_{H} =100GeV, m_{S} =O(100) GeV m_N =a few TeV