Elias Coniavitis

UPPSALA UNIVERSITET Compact Linear Collider (CLIC)

cHarged 2008 Uppsala, September 17th

CLIC

UPPSALA UNIVERSITET

🎽 30 GHz

POWER EXTRACTION STRUCTURE

BPM

DRIVE BEAM

RF power 🖌

QUAD

QUAD

ACCELERATING

STRUCTURES

ΙΔΙΝ ΒΕΔΜ

- Proposed future linear collider
- e^+/e^- at $\sqrt{s} = 3 TeV$
- Two-beam acceleration technology
- Low-energy, high-intensity drive beam parallel to the main linac → RF power for accelerating structures.
- CLIC Test Facility (CTF3) & extensive beam dynamics studies: demonstrate key tech issues by 2010

Charged Higgs

- LHC: Significant discovery reach, but:
 - Discovery very challenging for heavy H^+ , or tan β in region around 7
 - Precise parameter determination very difficult

Charged Higgs

- High-energy e⁺e⁻ collider could tackle these challenges
 - More precise knowledge of collision energy
 - Cleaner environment
 - Fewer backgrounds
- In present study:
 - Focus on very high H+ masses
 - Examine potential for parameter determination

Charged Higgs

• MSSM

- H⁺ only decays to SM particles
- No SUSY backgrounds considered
- Both dominant decay modes studied:

$$- H^+ \rightarrow tb \& H^+ \rightarrow \tau v$$

- Two channels:
 - $e^+e^- \rightarrow H^+H^- \rightarrow tbtb$
 - $e^+e^- \rightarrow H^+H^- \rightarrow tb\tau v$
- All results for integrated luminosity of 3000 fb⁻¹ (~4 years)

CLIC parameters and beam-beam effects considered for this study

Center-of-mass energy	3	TeV
Main linac RF frequency	30	GHz
Accelerating gradient	150	MV/m
Linac and site lengths	28/33.2	km
Linac repetition rate	150	Hz
No. of bunches per pulse	220	
No. of particles per bunch	2.56	10 ⁹
Bunch spacing	0.267	ns
Horizontal emittance $(\beta\gamma)\epsilon_x$	0.660	mm.mrad
Vertical emittance $(\beta\gamma)\epsilon_y$	0.001	mm.mrad
Horizontal beam size σ_X	60	nm
Vertical beam size σ_y	0.7	nm
Bunch length σ_z	30.8	μ m
Peak luminosity	6.5	10 ³⁴ cm ⁻² s ⁻¹
Luminosity within 1% of <i>E_{cm}</i>	3.3	10 ³⁴ cm ⁻² s ⁻¹
Beamstrahlung loss	16.0	%
Coherent pairs per bunch crossing	5	10 ⁷
$\gamma\gamma \rightarrow$ hadrons per bunch crossing	0.73	

(Parameters have changed since study was performed. For up-to-date parameters, please see http://clic-meeting.web.cern.ch/clic-meeting/clictable2007.html)

CLIC parameters and beam-beam effects considered for this study

(Parameters have changed since study was performed. For up-to-date parameters, please see http://clic-meeting.web.cern.ch/clic-meeting/clictable2007.html)

UPPSALA UNIVERSITET

Production Cross-section

• Production cross-section affected by beam-beam effects

Codes & Tools

- **HDECAY:** Charged Higgs boson decay widths and branching ratios calculation
- **PYTHIA 6.342:** Signal generation & fragmentations. Beamstrahlung, $\gamma\gamma \rightarrow$ hadrons included
- MadGraph/MadEvent: SM background generation. Beamstrahlung, $\gamma\gamma \rightarrow$ hadrons included with a custom routine
- **SIMDET:** Fast detector simulation and event reconstruction

 $e^+e^- \rightarrow H^+H^- \rightarrow tbtb$

- Events with no isolated lepton, at least 8 jets, of which 4 b-jets
- Assignment of the non-b jets to 2 W bosons, reconstruction of top quarks and of the charged Higgs bosons
- Reduce SM $e^+e^- \rightarrow tbtb$, bbbb, tttt background: Cuts on bb, tt and tb inv. mass
- Mass constrained kinematical fit: better reconstruction.

$e^+e^- \rightarrow H^+H^- \rightarrow tb\tau\nu$

- Events with no isolated lepton, at least 5 jets, of which 2 b-jets and 1 τ-jet,
- Assignment of 2 non-b jets to a W boson, reconstruction of the top quark and of $H^+ \rightarrow tb$,
- Transverse mass reconstruction for $H^- \rightarrow \tau v$
- Reduce SM background: Cuts on missing p_T, H[±] transverse mass and transverse angle between H[±] candidates

UPPSALA UNIVERSITET

Discovery Potential

- For discovery, require $S/\sqrt{B}>5$ and $S\geq10$
 - No systematics included

- Discovery contour only slightly $\tan\beta$ -dependent.
- Reaching masses above 1 TeV

Mass Measurement

- χ^2 fit on H⁺H⁻ \rightarrow tbtb (+ background) sample to determine H[±] mass (and thereby m_A)
- Obtained relative uncertainties for m_{H^+} typically <1%

	<i>m_A</i> (GeV)	δm_A (GeV)
Small tan β	697.4	3.7
Large tan β	702.2	4.8

The real mass m_A is 700 GeV and $\mathcal{L} = 3000$ fb⁻¹

$tan\beta$ Determination

• Determine tan β from ratio of signal rates for $H^+H^- \rightarrow tbtb$ and $H^+H^- \rightarrow tb\tau v$

$$\frac{\Gamma(H^{\pm} \to tb)}{\Gamma(H^{\pm} \to \tau\nu)} \simeq \frac{3\Delta_{QCD}}{m_{\tau}^2} \times \left[\bar{m}_t^2(m_{H^{\pm}})\cot^4\beta + \bar{m}_b^2(m_{H^{\pm}})\right]$$
$$R = \frac{N_{tbtb}}{N_{tb\tau\nu}} = \frac{\epsilon_{tbtb}}{2\epsilon_{tb\tau\nu}} \times \frac{\Gamma(H^{\pm} \to tb)}{\Gamma(H^{\pm} \to \tau\nu)}$$

• Calculate expected relative uncertainty in R

tan^β Determination

- Uncertainty is *smallest* in the $tan\beta = 5-10$ region
 - Low tan β : signal rate for H⁺H⁻ \rightarrow tbtv too small
 - High tanβ: ratio R constant

- Simulation study of charged Higgs bosons for CLIC
- Sensitivity over the entire $\tan\beta$ region and for masses up to 1 TeV
- Very accurate mass determination possible
- Possibility of determining tanβ in the "intermediate" region around 7

• For more details please see:

E. Coniavitis & A. Ferrari, Phys. Rev. D75 (2007) 015004.

Backup Slides

CLIC

- χ^2 fit on tbtb to determine H+ mass
- Compare a sample of *data* events to various large samples of *simulated* events, normalized to 3000fb⁻¹, using: $\chi^{2} = \sum_{i} \frac{(N_{r}(i) - N_{s}(i))^{2}}{N_{r}(i)}$
- For each mass, the number of *simulated* events is first adjusted to minimize χ^2 . Then, $Min(\chi^2)$ is plotted as a function of the simulated mass parameter m_A, in order to find the value that maximizes the likelihood function.

Detailed cuts: tbtb

- both *W* candidates must have a reconstructed mass between 50 and 150 GeV, and both *t* candidates must have a reconstructed mass between 100 and 300 GeV,
- the mass difference between the two (*tb*) systems must be smaller than 250 GeV,
- $m_{rec}(tt)$ and $m_{rec}(bb)$ must be smaller than 1 TeV,
- $\frac{1}{2}[m_{rec}(tt) + m_{rec}(bb)]$ must be larger than 1 TeV.

Detailed cuts: tbtv

- the *W* candidate must have a reconstructed mass between 50 and 150 GeV, and the *t* candidate must have a reconstructed mass between 100 and 300 GeV,
- the missing transverse momentum must be larger than 400 GeV,
- the transverse mass m_T of the charged Higgs boson decaying into must be larger than 150 GeV,
- in the transverse plane, the angle between the two reconstructed charged Higgs bosons must be larger than 2.4 rad.