Doubly cHarged Higgs at the LHC in 3-3-1 model Nelson V. Cortez (São Paulo Univ.)

Charged Higgs 2008, Uppsala-Se

INTRODUCTION

* SM is impressively successful in describing the existing experimental results.

* SU (3) x SU (2) x U (1) gauge group.

* BUT it presents open questions without solutions !!

A FÉ vai contra o senso comum do que é ciência ?

O APARENTE PARADOXO da FÉ no SENHOR DEUS

What are we looking for is what we really need ?

Are we looking for in the right direction, or at least could it be more complete ?

Would you like new PARTICLES ?

H(1-3) h $H^{\pm}(1-2)$ J1-3 Z'M T E

Among the alternatives to SM, we have:

Enlarge the gauge group;
Supersymmetric extensions;
Superstrings inspired models;
Others.

* One of then is the 3-3-1 model class.

. They have interesting possibilities for the physics at the TeV scale.

And it is a quite simple quiral model.

The 3-3-1 Model

 $SU_{L}(3) \otimes U_{N}(1)$ Pisano-Pleitez-Frampton Model Phys.Rev.D 46:410-417,1992 Phys.Rev.Lett.69:2889-2891,1992. (each one has > than 300 citations in Spires).

* At low energies they coincide with the SM They explain some fundamental questions:

 Due to cancelation of chiral anomalies, the number of generations N must be a multiple of 3, however due to asymptotic freedom in QCD, which impose that the number of generations must be N <= 5, the unique allowed number of generations is N = 3;

some versions predicted the mixing weak angle.

- The electric charge is quantized independent of the nature of the neutrinos (Majorana/Dirac)

 The fact that one generation of quarks is treated differently from the others, could lead to an explanation of the heavy top quark mass.

> The seesaw mechanism can be naturally incorporated in some version of the 3-3-1 models

The models are non-perturbative at TeV scale, as well as the supersymmetric version. * There are some versions of 3-3-1 model . They depend of the choice of the parameter β in the electric charge operator:

$$\frac{Q}{e} = \frac{1}{2} \left(\lambda_3 - \beta \lambda_8 \right) + X$$

Where λ are the Gell-Mann matrices and X is the U(1) charge.

The minimal scalar sector contains the three triplets:

$$\langle \eta^0 \rangle = v_{\eta}, \langle \rho^0 \rangle = v_{\rho}, \langle \chi^0 \rangle = v_{\chi}, v_{\eta}^2 + v_{\rho}^2 = v_W^2 = (246 \text{ GeV})^2.$$

The left-handed lepton matter content transforms as:
 $\begin{pmatrix} v'_a & l'_a & X'_{a,L} \end{pmatrix}^T \sim (3, 0)$, where a = family index.

Symmetry Breaking

$$SU(3)_{L} \otimes U(1)_{N} \xrightarrow{<\chi>} SU(2)_{L} \otimes U(1)_{Y} \xrightarrow{<\eta,\rho>} U(1)_{em}$$
$$\varphi = v_{\varphi} + \xi_{\varphi} + i\zeta_{\varphi} \qquad (v, u, w) \qquad v^{2} + u^{2} = v_{W}^{2} \qquad w \square u, v$$

Neutral Sector

$$H_1^0 \hspace{0.1in} H_2^0 \hspace{0.1in} \leftrightarrow \hspace{0.1in} \xi_{\eta,
ho} \hspace{0.1in} H_3^0 \leftrightarrow \xi_{\chi}$$

Charged Sector H_1^+ H_2^+ \leftrightarrow $\xi_{\eta,\rho,\chi}$

$$H^{++} \leftrightarrow \xi_{\rho,\chi} \qquad \frac{u^2 + w^2}{2vw} (fv - 2\lambda_9 uw)$$

The Production of Doubly Charged Higgs at LHC in the 3-3-1 Model

Drell-Yan Mechanism

Exotic Particles Masses (em GeV)

Е	М	Т	$oldsymbol{J}_1$	J_2	J_3	Ζ'	V	U
190	1140	2600	1300	1030	1830	2200	600	600

Parameters

$$v_{\eta} = 195 \ GeV$$
 $v_{\chi} = 1300 \ GeV$

λ_1	λ_2	λ_3	λ_4	λ_{5}	λ_6	λ_7	λ_8	λ_9
- 1.2	- 1.	- 1.	- 2.84	- 1.57	1.	- 3.	- 1.	− 1.

Quark loop contribution from H_3^0 $\sigma = \frac{\beta_{H^{++}}}{(32\pi^2)^2} \left(\frac{\alpha \wedge \xi}{s}\right) \left|\sum_J \Lambda_J M_J^2 \left(2 - \beta_J^2\right) I_J\right|^2$

quark and scalar couplings

for the scalar and the quarks

$$I_{J} = \int_{0}^{1} \frac{dx}{x} \ln \left[1 - \frac{(1-x)sx}{M_{J}^{2}} \right]$$

 $s-4M^2$

$$I_J = \frac{1}{2} \ln^2 \frac{\beta_J - 1}{\beta_J + 1}$$

DCHB x Drel Yan x GGF

Left-Right Symmetric

Model

LHC x Tevatron

LRSM x 331(DY) x 331(GGF)

Branching Ratios

\mathbf{H}^{\pm}	H		H^{++}		$\mathbf{H}^{\pm\pm}$				
qJ	l^-E^-	ГМ	l^+E^+	l^+M^+	$U^{\pm\pm}H^0_1$	$V^{\pm}H_{1}^{\pm}$	$U^{\!\pm\!\pm}\gamma$	$U^{\pm\pm}Z$	
0.001	0.08	0.005	3.0	6.0	2.0	19.0	29.0	444	