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Abstract

Using a peculiar version of the SU(3)L⊗U(1)N electroweak model, we investigate the production

of doubly charged Higgs boson at the Large Hadron Collider. Our results include branching ratio

calculations for the doubly charged Higgs and for one of the neutral scalar bosons of the model.
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I. INTRODUCTION

In the last few years we have seen a tremendous experimental progress in the realm of the

weak interactions. However, these advances do not attain the scalar sector yet. This is the

sense in which LHC (Large Hadron Collider) facilities may shed some light especially on the

Higgs boson. One of the main ingredients of the Standard Model is the Higgs mechanism

which, in principle, explains how the particles gain masses through the introduction of an

isodoublet scalar field. The scalar field is the responsible for the spontaneous breakdown of

the gauge symmetry. After electroweak symmetry breaking, the interaction of this scalar

with the gauge bosons and fermions generate the mass of the particles. In this process there

remains a single neutral scalar, manifesting itself as the Higgs particle.

The Standard Model possibly is a low energy effective theory which must be generalized

by some GUT (Grand Unified Theory). However, there are several motivations to extend

the electroweak theory below the GUT scale. Supersymmetric Models, for example, provide

a solution to the hierarchy problem through the cancelation of the quadratic divergences via

fermionic and bosonic loop contributions [1]. The Little Higgs Model, recently proposed,

predicts that the Higgs boson is a pseudo-Goldstone boson of some approximate broken

global symmetry [2]. Therefore, this model is also able to solve the naturalness problem of

the Higgs mass. One of the main motivations for the Left-Right Models and for the study

of their phenomenological consequences is that in which the Higgs triplet representation

furnishes a seesaw type neutrino mass matrix associated with the presence of a doubly

charged Higgs boson [3]. Therefore, these models suggest a route to understanding the

pattern of the neutrino masses.

Doubly charged Higgs bosons appear in several popular extensions of the Standard Model

such as left-right symmetric models [3] and Higgs triplet models [4]. However, there is

another interesting class of electroweak models which also predict particles like that. This

class of models is called 3-3-1 Models [5, 6]. This is the simplest chiral extension of the

Standard Model. It is able to solve the fermion family’s replication problem through of a

simple relation between the number of colors and the anomaly cancelation mechanism. It is

important to notice that a solution to this problem is not furnished even in the context of the

GUTs. The 3-3-1 Models have other interesting features, as for example the upper bound

on the Weinberg mixing angle, through the relation sin2 θW < 1/4. This feature does not
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happen in any kind of others electroweak models except GUTs, where the value of sin2 θW is

predicted. This result leads to an upper bound for the energy scale of the model when this

parameter is evolved to high values [7]. In a similar fashion as occurs in Left-Right Model,

the seesaw mechanism can be naturally incorporated in some versions of the 3-3-1 Models

[8].

No Higgs bosons have yet been found. In the meantime, it is the last brick that is lacking

to finish the construction of the building of the standard electroweak theory. Besides, it is

possible that the Higgs sector brings to light a non standard physics.

Since that the 3-3-1 Models are good candidates for physics beyond the Standard Model,

it is interesting to evaluate if the future accelerators will produce events in sufficient numbers

to detect some of the 3-3-1 Higgs bosons. In particular, there is an increasing interest in the

phenomenology associated with doubly charged Higgs bosons, a kind that appears in models

that admit scalars in triplet representation of the gauge group [9]. Here we are interested

in one of such version of the 3-3-1 Models for which the scalar fields come only in triplet

representation [6, 8]. It predicts three new neutrals, four single charged and two doubly

charged Higgs bosons. These scalars can be disclosed in relatively low energies, which make

them interesting for searches in the next generation of particle accelerators.

Our work is organized as follows. In Sec. II we summarize the relevant features of the

model, in Sec. III we present the cross-section calculations and in Sec. IV we give our

conclusions.

II. OVERVIEW OF THE MODEL

The underlying electroweak symmetry group is SU(3)L⊗U(1)N , where N is the quantum

number of the U(1) group. Therefore, the left-handed lepton matter content is
(

ν ′a ℓ′a L
′
a

)

T

L

transforming as (3, 0), where a = e, µ, τ is a family index (we are using primes for the

interaction eigenstates). L
′
aL are lepton fields which can be the charge conjugates ℓ′aR

C [5],

the antineutrinos ν ′La
C [10] or heavy leptons P ′+

aL

(

P ′+
aL = E ′+

L ,M
′+
L , T ′+

L

)

[6].

The model of Ref. [6] has the simplest scalar sector for 3-3-1 Models. In this version the

charge operator is given by
Q

e
=

1

2

(

λ3 −
√

3λ8

)

+N, (1)

where λ3 and λ8 are the diagonal Gell-Mann matrices and e is the elementary electric charge.
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The right-handed charged leptons are introduced in singlet representation of SU(3)L as

ℓ′−aR ∼ (1,−1) and P ′+
aR ∼ (1, 1).

The quark sector is given by

Q1L =











u′1

d′1

J1











L

∼
(

3,
2

3

)

, QαL =











d′α

u′α

J ′
α











L

∼
(

3∗,−1

3

)

, (2)

where α = 2, 3, J1 and Jα are exotic quarks with electric charge 5
3

and −4
3

respectively. It

must be notice that the first quark family transforms differently from the two others under

the gauge group, which is essential for the anomaly cancelation mechanism [5].

The physical fermionic eigenstates rise by the transformations

ℓ′−aL,R = AL,R
ab ℓ−bL,R, P ′+

aL,R = BL,R
ab P+

bL,R, (3a)

U ′
L,R = UL,RUL,R, D′

L,R = DL,RDL,R, J ′
L,R = J L,RJL,R, (3b)

where UL,R =
(

u c t
)

L,R
, DL,R =

(

d s b
)

L,R
, JL,R =

(

J1 J2 J3

)

L,R
and AL,R, BL,R,

UL,R, DL,R, J L,R are arbitrary mixing matrices.

The minimal scalar sector contains the three scalar triplets

η =











η0

η−1

η+
2











∼ (3, 0) , ρ =











ρ+

ρ0

ρ++











∼ (3, 1) , χ =











χ−

χ−−

χ0











∼ (3,−1) . (4)

The most general, gauge invariant and renormalizable Higgs potential, which conserves the

leptobaryon number [11], is

V (η, ρ, χ) = µ2
1η

†η + µ2
2ρ

†ρ+ µ2
3χ

†χ+ λ1

(

η†η
)2

+ λ2

(

ρ†ρ
)2

+ λ3

(

χ†χ
)2

+

+
(

η†η
) [

λ4

(

ρ†ρ
)

+ λ5

(

χ†χ
)]

+ λ6

(

ρ†ρ
) (

χ†χ
)

+ λ7

(

ρ†η
) (

η†ρ
)

+

+λ8

(

χ†η
) (

η†χ
)

+ λ9

(

ρ†χ
) (

χ†ρ
)

+
1

2

(

fǫijkηiρjχk + H. c.
)

(5)

The neutral components of the scalars triplets (4) develop non zero vacuum spectation values

〈η0〉 = vη, 〈ρ0〉 = vρ and 〈χ0〉 = vχ, with v2
η + v2

ρ = v2
W = (246 GeV)2. This mechanism

generate the fermion and gauge boson masses [12]. The pattern of symmetry breaking is

SU(3)L ⊗ U(1)N

〈χ〉7−→ SU(2)L ⊗ U(1)Y

〈η,ρ〉7−→ U(1)em. Therefore, we can expect vχ ≫ vη, vρ.

In the potential (5) f and µj (j = 1, 2, 3) are constants with dimension of mass and the λi
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(i = 1, . . . , 9) are adimensional constants with λ3 < 0 and f < 0 from the positivity of the

scalar masses [12]. The η and ρ scalar triplets give masses to the ordinary fermions and

gauge bosons, while the χ scalar triplet gives masses to the new fermion and gauge bosons.

In this work we are using the eigenstates and masses (see Appendix B) of the Ref. [12]. For

others analysis of the 3-3-1 Higgs potential see Ref. [13].

Symmetry breaking is initiated when the scalar neutral fields are shifted as ϕ = vϕ +ξϕ +

iζϕ, with ϕ = η0, ρ0, χ0. Thus, the physical neutral scalar eigenstates H0
1 , H0

2 , H0
3 and h0

are related to the shifted fields as




ξη

ξρ



 ≈ 1

vW





cω sω

sω −cω









H0
1

H0
2



 , ξχ ≈ H0
3 , ζχ ≈ ih0, (6a)

and in the charged scalar sector we have

η+
1 = sωH

+
1 , η+

2 = sϕH
+
2 , ρ+ = cωH

+
1 , (6b)

χ+ = cϕH
+
2 , ρ++ = sφH

++, χ++ = cφH
++, (6c)

with the condition that vχ ≫ vη, vρ in Eqs. (6a) and cω = cosω = vη/
√

v2
η + v2

ρ, sω = sinω,

cφ = cos φ = vρ/
√

v2
ρ + v2

χ, sφ = sinφ, cϕ = cosϕ = vη/
√

v2
η + v2

χ, sϕ = sinϕ. The H0
1 Higgs

boson in Eq. (6a) can be the standard model scalar boson, since its mass (see Appendix B)

has no dependence on the spectation value vχ [12].

The Yukawa interactions for leptons and quarks are, respectively,

− Lℓ = GabψaLℓ
′
bRρ+G′

abψaLP
′
bRχ+ H. c., (7a)

−LQ = Q1L

∑

i

[

Gu
1iU

′
iRη +Gd

1iD
′
iRρ+

∑

α

QαL

(

F u
αiU

′
iRρ

∗ + F d
αiD

′
iRη

∗)
]

+

+GjQ1LJ1Rχ+
∑

αβ

Gj
αβQαLJ

′
βRχ

∗ + H. c. (7b)

In Eqs. (7), as before mentioned a, b = e, µ, τ and α = 2, 3.

Beyond the standard particles γ, Z and W± the model predicts, in the gauge sector, one

neutral (Z ′), two single charged (V ±) and two double charged (U±±) gauge bosons. The

interactions between the gauge and Higgs bosons are given by the covariant derivative

Dµϕi = ∂µϕi − ig

(

~Wµ.
~λ

2

)j

i

ϕj − ig′NϕϕiBµ, (8)
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where Nϕ are the U(1) charges for the ϕ Higgs triplets (ϕ = η, ρ, χ). ~Wµ and Bµ are field

tensors of SU(2) and U(1), respectively, ~λ are Gell-Mann matrices and g and g′ are coupling

constants for SU(2) and U(1), respectively.

Introducing the eigenstates (3) and (6) in the Lagrangeans (7) we obtain the Yukawa

interactions as function of the physical eigenstates, i. e.,

−Lℓ =
1

2

{

1

vρ

[

cωνUνeH+
1 +

(

vρ + sωH
0
1 − cωH

0
2

)

e− + sφP+UPeH++
]

MeGRe
−+

+
1

vχ

[

cωνVνPH−
2 + cφe−VePH−− +

(

vχ +H0
3 + ih0

)

P+
]

MEGRP
+

}

+

+H. c., (9a)

−LQ =
1

2

{

UGR

[

1 +

[

sω

vρ
+

(

cω
vη

+
sω

vρ

)

Vu

]

H0
1 +

[

−cω
vρ

+

(

sω

vη
− cω
vρ

)

Vu

]

H0
2

]

MuU+

+DGR

[

1 +

[

cω
vη

+

(

sω

vρ
− cω
vη

)

VD

]

H0
1 +

[

sω

vη
−
(

cω
vρ

+
sω

vη

)

VD

]

H0
2

]

MdD+

+ UGR

[

sω

vη
V †

CKMH
−
1 +

(

cω
vη

− sω

vρ

)

VudH+
1

]

MdD+

+ DGR

[

cω
vρ
VCKMH

+
1 +

(

sω

vη
− cω
vρ

)

Vud†H−
1

]

MuU

}

+ H. c., (9b)

−LJ =
1

2

[

JGRJ L† (NULMuU + RDLMdD
)

+

+
(

UUL†X1 +DDL†X2 + JJ L†X0

)

J LMJGRJ
]

+ H. c., (9c)

where GR = 1 + γ5, V
U
L V

D
L = VCKM, the Cabibbo-Kobayashi-Maskawa mixing matrix, Uνe,

UPe, Vνe, VeP , Vu = V U
L ∆V U†

L , Vd = V D
L ∆V D†

L and Vud = V U
L ∆V D†

L are arbitrary mixing ma-

trices, Me = diag
(

me mµ mτ

)

, MP = diag
(

mE mM mT

)

, Mu = diag
(

mu mc mt

)

,

Md = diag
(

md ms mb

)

and MJ = diag
(

mJ1
mJ2

mJ3

)

. In Eq. (9c) we have defined

N =











sωH
+
2 /vη 0 0

0 sφH
−−/vρ sφH

−−/vρ

0 sφH
−−/vρ sφH

−−/vρ











, X0 ≈
vχ +H0

3 + ih0

vχ











1 0 0

0 1 1

0 1 1











, (10a)

R =











sφH
++/vρ 0 0

0 sωH
−
2 /vη sωH

−
2 /vη

0 sωH
−
2 /vη sωH

−
2 /vη











, X1 =
1

vχ











cωH
−
2 0 0

0 cφH
++ cφH

++

0 cφH
++ cφH

++











, (10b)

X2 =
1

vχ











cφH
−− 0 0

0 cωH
+
2 cωH

+
2

0 cωH
+
2 cωH

+
2











. (10c)
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We call attention to the fact that non standard field interactions violate leptonic number,

as can be seen from the Lagrangians (7) and (8). However the total leptonic number is

conserved [5].

III. CROSS SECTION PRODUCTION

The main mechanism for the production of Higgs particles in pp collisions occurs through

the mechanism of Drell-Yan and gluon-gluon fusion as shown in Fig. 1. In all calculations

we are considering that the charged fermionic mixing matrices [see Eqs. (3)] are diagonals.

Using the interaction Lagrangians (5) and (9) we first evaluate the differential cross section

for the Drell-Yan process, i. e., pp → H++H−− through the exchange of γ, Z, Z ′, H0
1 and

H0
2 in the s-channel. Therefore we obtain the differential cross section for this reaction as

dσ̂

dΩ
=

1

64π2ŝ

(

|Mγ|2 +
∣

∣

∣
MH0

1

∣

∣

∣

2

+
∣

∣

∣
MH0

2

∣

∣

∣

2

+ |MZ|2 + |MZ′|2 +2ReMH0
1
MH0

2

∗
)

,

where

dσ̂

d cos θ
=

βH±±

24

{

[

Λ1ζ
(1) (ŝ)mqvηvρ

]2
+
[

Λ2ζ
(2) (ŝ)

]2 (
v4

ηm
2
u + v4

ρm
2
d

)

(2vW vηvρ)
2

[

8
(

m2
q +m2

H±±

)

− 4û− 4t̂
]

+

+
2π

ŝ3

(

ΛαQq

sin θW

)2
[

(

ŝ− 2m2
q

)

ŝ− 4m2
H±±

(

ŝ+ 2m2
q

)

−
(

t̂− û
)2
]

}

+

+
∑

Z,Z′

βH±±α2πΛ2
Z(Z′)

36 sin2 θW cos2 θW ŝ
(

ŝ−m2
Z(Z′) + imZ(Z′)ΓZ(Z′)

)2

[

8m4
H±±

(

g
q(q′)
V

2
+ g

q(q′)
A

2
)

+

+8m2
H±±

(

2mq
2 − t̂− û

)

(

g
q(q′)
V

2
+ g

q(q′)
A

2
)

+ 8m4
q

(

g
q(q′)
V

2
+ g

q(q′)
A

2
)

+

−8m2
q

(

t̂+ û
)

(

g
q(q′)
V

2
+ g

q(q′)
A

2
)

+ 8m2
q ŝg

q(q′)
A

2
+ 2

(

t̂+ û
)2
(

g
q(q′)
V

2
+ g

q(q′)
A

2
)

+

−2ŝ2
(

g
q(q′)
V

2
+ g

q(q′)
A

2
)]

. (11)

Here,
√
ŝ is the CM (center of mass) energy of the qq̄ system. For the Standard Model

parameters we assume PDG values, i. e., mZ = 91.19 GeV, sin2 θW = 0.2315, and mW =

80.33 GeV [14]. ΓZ(Z′) are the total width of the boson Z(Z ′) [15, 16]. The velocity of the

Higgs in the CM of the process is denoted through βH±±. The Λi (i = 1, 2) are the vertex

strengths for H0
1H

−−H++ and H0
2H

−−H++, respectively, while Λγµ is one for γH−−H++

and the ΛZ(Z′)µ
is for the bosons Z (Z ′)H−−H++. The analytical expressions for these

vertex strengths are

Λ1 = −2i
{

2
[

(λ6 + λ9) c
2
φ + (2λ2 + λ9) s

2
φ

]

sωvρ + cω
[

2
(

λ5c
2
φ + λ4s

2
φ

)

vη+

7



−fcφsφ]} , (12a)

Λ2 = icω
{

2
[

(−λ5 + λ6 + λ9) c
2
φ + 2 (2λ2 − λ4 − λ9) sω

]

vη + fcφsφ

}

, (12b)

Λγµ = −e
(

c2φ − s2
φ

)

(p− q)µ , (12c)

ΛZµ = −e 4 sin2 θW

(

v2
η − v2

χ

)

− v2
η

4
(

v2
η + v2

χ

)

sin θW cos θW

(p− q)µ , (12d)

ΛZ′µ = −e
(

10 sin2 θW − 1
)

v2
η +

(

1 − 7 sin2 θW

)

v2
χ

4
(

v2
η + v2

χ

)

sin θW

√

3 cos2 θW

(

1 − 4 sin2 θW

)

(p− q)µ . (12e)

The Higgs parameters λi (i = 1 . . . 9) must run from −3 to +3 in order to allow perturbative

calculations. For H0
α (α = 2, 3) we take mH0

α
= (0.2 − 3.0) TeV, while we assume mH0

1
= 230

GeV for the standard model scalar one. It must be notice that here there is no contribution

from the interference between the scalar particle H0
1 and a vectorial one (γ, Z or Z ′). The

kinematic invariant t̂ and û are,

t̂ = m2
q +m2

H±±
− ŝ

2

(

1 − cos θ

√

1 − 4m2
q

ŝ

√

1 − 4m2
H±±

ŝ

)

, (13a)

û = m2
q +m2

H±±
− ŝ

2

(

1 + cos θ

√

1 − 4m2
q

ŝ

√

1 − 4m2
H±±

ŝ

)

. (13b)

The total cross section (σ) for the process pp → H++H−− is related to the cross section

(σ̂) of the subprocess qq → H++H−− through

σ =
∑

qi=u,d,s,c

∫ 1

τmin

∫ − ln
√

τmin

ln
√

τmin

dτdy fqi

(√
τey
)

fq̄i

(√
τe−y

)

σ̂ (τ, ŝ) , (14)

where τmin = ŝ/s and fqi and fq̄i are the structure functions of the quark and antiquark in

the proton, for which the factorization scale is taken equal to the center of mass energy of

the qq̄ system and used in our numerical calculations.

Another form to produce a pair of doubly charged Higgs is via the gluon-gluon fusion

through the reaction gg → H++H−− (see Fig. 1b). As the final state is neutral, the s-

channel involves the exchange of the three neutral Higgs H0
1 , H0

2 and H0
3 . The exchange of a

photon is not allowed by C conservation (Furry’s theorem). Therefore, the differential cross

section for gluon-gluon fusion can be expressed by

dσ̂

dΩ
=

1

64π2ŝ

[

∣

∣

∣
MH0

1

∣

∣

∣

2

+
∣

∣

∣
MH0

2

∣

∣

∣

2

+
∣

∣

∣
MH0

3

∣

∣

∣

2

+

+2
(

ReMH0
1
M∗

H0
2

+ ReMH0
1
M∗

H0
3

+ ReMH0
2
M∗

H0
3

)]

. (15)
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In order to make explicit the different contributions to the elementary cross section, we

will present them separately. The quark-loop contributions involve the Higgs Hi, where

i = 1, 2, 3, which are exchanged in the s-channel. For the H0
1 we have

σ̂H0
1

=
βH++

8192π3

[

αsΛ1ζ
(1)
]2







1

ŝ

∣

∣

∣

∣

∣

∑

q

Λq1
m2

qId

∣

∣

∣

∣

∣

2

+ ŝ

∣

∣

∣

∣

∣

∑

q

Λq1
λq [2 + (4λq − 1) Iq]

∣

∣

∣

∣

∣

2

+

−2π
∑

q

m2
qλq ln

(

r+q

r−q

)[

ln2

(

r+q

r−q

)

− π2

]

}

. (16)

We fix the scale parameter Λ = 0.2 GeV and the appropriate scale where the strong coupling

constant αs is evaluated as being equal to the center of mass energy of the subprocess, both,

used in our numerical calculations. The sums in Eq. (16) run over all generations where

λq = m2
q/ŝ and r±q = 1 ±

√

1 − 4λq. The Λq1
is the qqH0

1 vertex strength,

Λq1
= −i mq

2vW

GR. (17)

We also define the propagator for Higgs bosons,

ζ (i)(ŝ) =
1

ŝ−m2
Hi

+ imHi
ΓHi

, (18)

where ΓH0
i

are the total width of the H0
1 and H0

2 boson, with i = 1 for q = u, c, t, d, s, b and

i = 2 for u(c, t) or d(s, b), separately [16]. The Eq. (18) defines also the propagator for H0
3

with i = 3. However, H0
3 does not contribute to the Drell-Yan process.

For the Higgs H0
2 we have

σ̂H0
2

=
βH++

8192π3

[

αsΛ2

∣

∣ζ (2) (ŝ)
∣

∣

]2

{

1

ŝ

∑

q

Λq2

(

m2
u

vη

vρ

+m2
d

vρ

vη

)2

|Iq|2 +

+ŝ

(

vη

vρ
+
vρ

vη

)2
∣

∣

∣

∣

∣

∑

q

Λq2
λq [2 + (4λq − 1) Iq]

∣

∣

∣

∣

∣

2

+

+4π
∑

q

Λq2
ln

(

r+q

r−q

)(

−m2
u

v2
η

v2
ρ

+m2
d

v2
ρ

v2
η

)

λq

}

, (19)

where Λq2
is the strength of the qqH0

2 vertex, i. e.:

Λq2
= − i

2vW
GR

(

mu
vη

vρ
+md

vρ

vη

)

. (20)

The contribution of H0
3 to the cross-section is

σ̂H0
3

=
βH++

8192π3

[

α2Λ3

∣

∣ζ (3)
∣

∣

]2

∣

∣

∣

∣

∣

∑

J=J1,J2,J3

ΛJ3λJ [2 + (4λJ − 1) IJ ]

∣

∣

∣

∣

∣

2

, (21)
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where ΛJ3 describe the quark vertex with the Higgs H0
3 and Λ3 for the H0

3 with H±±, i. e.,

ΛJ3 = −imJ

2vχ
GR, (22a)

Λ3 = −2ivχ

[

(λ6 − λ9) s
2
ϕ + (2λ3 + λ9) c

2
φ

]

. (22b)

We note that H0
3 decays only into exotic leptons and quarks because it becomes massive at

the first symmetry breaking. Therefore, the H0
3 total width is obtained from

Γ
(

H0
3 → all

)

= Γ0
J1J̄1

+ Γ0
J2J̄2

+ Γ0
J3J̄3

+ 3Γ0
P±P∓ + Γ0

H0
1
H0

2

+ Γ0
H±

1
H∓

1

+

+Γ0
H±

2
H∓

2

+ Γ0
H±

1
H∓

2

+ Γ0
U∓∓U±±, (23)

where Γ0
XY = Γ (H0

3 → XY ). The partial widths are show in the Appendix A.

The total width of the decay of the Higgs H±± in quarks, leptons, standard

charged gauge boson and charged Higgs
(

W±H±
2

)

, single charged Higgs
(

H±
1 H

±
2

)

, dou-

bly charged gauge bosons and a photon (U±±γ), doubly charged bosons and Higgs

(U±±h0, U±±H0
1 , U

±±H0
2 , U

±±H0
3 ), doubly charged bosons and Z or Z ′ (U±±Z,U±±Z ′), and

charged extra gauge boson and Higgs
(

V ±H±
1

)

is given by

Γ
(

H±± → all
)

= Γ±±
J̄1qd,s,b

+ Γ±±
q̄u,c,tJ2,3

+ Γ±±
J̄2,3qu,c,t

+ Γ±±
e±P±± + Γ±±

W±H±
2

+ Γ±±
H±

1
H±

2

+ Γ±±
U±±γ+

+Γ±±
U±±h0 + Γ±±

U±±H0
1

+ Γ±±
U±±H0

2

+ Γ±±
U±±H0

3

+ Γ±±
U±±Z + Γ±±

U±±Z′+

+Γ±±
V ±H±

1

(24)

with Γ±±
XY = Γ (H±± → XY ) (see Appendix A for the partial widths).

The contribution for the interference of the H0
1 and H0

2 is given by

dσ̂H0
1
−H0

2

dΩ
=
∑

qu,qd

α4
sΛ1Λ2Λk1

Λk2
ζ (2) (ŝ) δab

8π

{

ε
µ(a)
k1

ε
ν(b)
k2

kα
1 k

β
2

ŝ2
m2

qIq (25)

+i
εa

k1
εb

k2
δab

2
λ [2 + (4λ− 1) Iq]

}

×

×
{

ε
µ(a)
k1

ε
ν(b)
k2

kα
1 k

β
2 εαµνβ

ŝ2

(

vη

vρ
m2

uIqu
− vρ

vη
m2

dIqd

)

+

+i
εa

k1
εb

k2

2

[

vη

vρ

λU [2 + (4λU − 1) Iqu
] − vρ

vη

λD [2 + (4λD − 1) Iqd
]

]}

, (26)

where εµ,ν are the polarizations, k1,2 are the gluon momentum vectors, mqu
are the masses

of the u, c, t quarks (5 MeV, 1.5 GeV and 175 GeV respectively), mqd
are the masses of the

d, s, b quarks (9 MeV, 150 MeV and 5 GeV respectively) [14], λ is referred to all quarks and

λU for the quark u, c, t and λD for d, s, b respectively and εαµνβ is the antisymmetric tensor.
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The contribution for the interference of H0
1 and H0

3 gives

dσ̂H0
1
−H0

3

dΩ
=
∑

q

i
α4

sΛ1Λ3Λq1
Λq3

ζ (1) (ŝ) ζ (3)δa′b′ε
a′

q1
εb′

q2
δab

256π2
λ [2 + (4λ− 1) Iq]×

×
{

i
εa

q1
εb

q2

2
λ [2 + (4λ− 1) Iq] −

ε
µ(a)
q1 ε

(b)
q2 εαµνβ

ŝ2

}

, (27)

and finally we have the following for the H0
2 and H0

3

dσ̂H0
2
−H0

3

dΩ
=
∑

q

i
α4

sΛ2Λ3Λq2
Λq3

ζ (2) (ŝ) ζ (3) (ŝ) δa′b′ε
a′

q1
εb′

q2
δab

256π2
λ [2 + 4 (4λ− 1) Iq]×

×
{

εµ(a)
q1

εν(b)
q2

εαµνβ

(

vη

vρ
m2

uIqu
− vρ

vη
m2

dIqd

)

+ i
εa

q1
εb

q2

2

[

vη

vρ
λu [2 + (4λu − 1) Iqu

] +

−vρ

vη

λd [2 + (4λd − 1) Iqu
]

]}

. (28)

The loop integrals involved in the evaluation of the elementary cross section can be expressed

in terms of the function Iq (λq) ≡ Iq which is defined through

Iq =

∫ 1

0

dx

x
ln

[

1 − (1 − x)x

λq

]

=
1

2







−4 arcsin2
[

1/
(

2
√

λq

)]

, λq > 1/4,

[ln (r+q/r−q) + 2iπ] ln (r+q/r−q) − π2, λq < 1/4.

(29)

Here, q stands for the quarks running in the loop (Fig. 1b).

The total cross section (σ) for the process pp → gg → H−−H++ is related to the total

cross section (σ̂) through the subprocess gg → H−−H++, i. e.

σ =

∫ 1

τmin

∫ − ln
√

τmin

ln
√

τmin

dτdyG
(√

τey, Q2
)

G
(√

τe−y, Q2
)

σ̂ (τ, ŝ) , (30)

where G(x,Q2) is the gluon structure function, for which the factorization scale is taken

equal to the center of mass energy of the subprocess and used in our numerical calculations.

IV. RESULTS AND CONCLUSIONS

In this work we have calculated the pair production of doubly charged Higgs by computing

the contributions due the Drell-Yan and quark loop processes. In Sec. III we have given

the analytical expressions that allow the numerical evaluations of these contributions and it

was showed that the dominant contribution come from the well known Drell-Yan process.
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We have presented the cross section for the process pp→ H−−H++ involving the Drell-Yan

mechanism and the gluon-gluon fusion, to produce such Higgs bosons at the LHC (14 TeV).

Taking into account that the masses of the gauge bosons, Higgs and some other parame-

ters must satisfy the limits imposed by the model (see Sec. II), besides the approximations

in the calculations of masses (Appendix B) and eigenstates (Sec. II) given in Ref. [12],

we have considered two possibilities: f ≃ 0 and f = −99.67 GeV (see Table I). For

both possibilities we have assumed the values vη = 195 GeV, vχ = 1300 GeV, λ1 = −1.2,

−λ2 = −λ3 = λ6 = −λ8 = 1, λ4 = 2.98, λ5 = −1.57, λ7 = −3, but for λ9 we have used

λ9 = −1 when f ≈ 0 and λ9 = −1.9 when f = −99.67 GeV.

TABLE I: Approximated values of the masses (see Appendix B) used in this work. All the values

in this table are given in GeV.

f mE mM mT mH0
1

mH0
2

mH0
3

mh0 mH±
1

mH±
2

mV mU mZ′ mJ1
mJ2

mJ3

≈ 0
194 1138 2600 874 1322 2600

0 426 1315
603 601 2220 1300 1833 1833

-99.67 520 218 1295

The masses of the exotic bosons in Table I are in accordance with the estimated values

of CDF and D0 experiments, which probe their masses in the range from 500 GeV to 800

GeV [17], while the reach of the LHC will be in the range 1 TeV < mZ′ ≤ 5 TeV [18].

In Fig. 2 we show the cross section for the process pp → H++H−− for f ≃ 0 GeV.

Considering that the expected integrated luminosity for the LHC will be of order of 3× 105

pb−1/yr then the statistics give a total of ≃ 2× 104 events per year for Drell-Yan and ≃ 0.2

events per year for gluon-gluon fusion, for mH± = 1309 GeV.

TABLE II: Branching ratios for the H0
3 decay with mH0

3
= 2600 GeV. The notation used in this

table is BR0
XY = BR

(

H0
3 → XY

)

.

f (GeV) 10−5 × BR0
H0

1
H0

2

10−8 × BR0
H+

1
H−

1

BR0
H+

2
H−

2

BR0
H+

1
H−

2

BR0
E+E− BR0

M+M−

≈ 0 3.35 2 No
0.9999 2 × 10−7 2 × 10−6

-99.67 3.14 4 4 × 10−7

In Fig. 3, we show the results for the same process when f = −99.67 GeV. This value

was calculated considering the exotic boson masses in the range from 500 GeV to 800 GeV

12



and vη having a minimum value of 194.2 GeV, which assure the values of the λi between

−3 to +3, so we obtain the mass of the doubly charged Higgs, i. e., mH++=1780 GeV.

Considering the same integrated luminosity as above this gives a total of 585 events per

year for Drell-Yan and 0.13 events per year for gluon-gluon fusion. We present in Table II

the branching ratios for H0
3 → all with f ≃ 0 and f = −99.67 GeV and we can observe

that, due to the coupling constant, the largest width corresponds to H0
3 → H+

1 H
−
2 decay.

In Table III we present the branching ratios for H±± → all. From Table III it can also be

TABLE III: Branching ratio for the H±± decay with mH±± = 1308 GeV. Here BR±±
XY = 10−3 ×

BR (H±± → XY ).

f (GeV) BR±±
J̄1q

BR−−
ℓ−E− BR−−

ℓ−M− BR++
ℓ+E+ BR++

ℓ+M+ BR±±
U±±γ

≈ 0 0.001 0.08 0.005 3 6 29

-99.67 2 0.001 0.004 0.4 4 2

f (GeV) BR±±
W±H±

2

BR±±
V ±H±

1

BR±±
H±

1
H±

2

BR±±
U±±H0

1

BR±±
U±±Z

BR±±
U±±h0

≈ 0 No 19 No No 444 2

-99.67 0.09 13 329 6 146 0.5

noticed that, as the branching ratio(BR) for H±± → H±
1 H

±
2 and H±± → U±±Z, γ are large,

these channels could lead to some interesting signal.

We emphasize that the window for varying the free parameters is small because of the

constraints imposed on the model. In summary, the analysis of the values in Tables I, II

and III show that, although a large number of doubly charged Higgs can be produced by

the Drell Yan mechanism, the decays of these particles into ordinary quarks and leptons do

not lead to a good signature for its detection even for energies which the LHC can reach.

[1] J. Wess and B. Zumino, Nucl. Phys. B70 (1974) 39; J. Wess and B. Zumino, Phys. Lett. 49B

(1974) 52; J. Iliopoulos and B. Zumino, Nucl. Phys. B76 (1974) 310; S. Ferrara, J. Iliopoulos

and B. Zumino, Nucl. Phys. B77 (1974) 413; E. Witten, Nucl. Phys. B188 (1981) 513.

[2] N. Arkani-Hamed et al., JHEP 0208 (2002) 021; M. Scmaltz, Nucl. Phys. Proc. Suppl. 117

(2003) 40.

13



[3] J.C. Pati and A. Salam, Phys. Rev. D 10 (1974) 275; R. N. Mohapatra and J.C. Pati, Phys.

Rev. D 11 (1975) 566; G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12 (1975) 1502; T.

Rizzo, Phys. Rev. D 25 (1982) 1355.

[4] H. Georgi and M. Machacek, Nucl. Phys. B262 (1985) 463; J. F. Gunion, R. Vega, and

J. Wudka, Phys. Rev D42 (1990) 1673; J. F. Gunion, C. Loomis, and K. T. Pitts,

hep-ph/9610237.

[5] F. Pisano and V. Pleitez, Phys. Rev. D 46 (1992) 410; P. H. Frampton, Phys. Rev. Lett. 69

(1992) 2889; R. Foot, O. F. Hernandez, F. Pisano and V. Pleitez, ibid 47 (1993) 4158.

[6] V. Pleitez and M. D. Tonasse, Phys. Rev. D 48 (1993) 2353.

[7] A. G. Dias, R. Martinez and V. Pleitez, Eur. Phys. J. C, 39 (2005) 101; P. Jain and S. D.

Joglekar, Phys. Lett B, 407 (1997) 151.

[8] N. V. Cortez and M. D. Tonasse, Phys. Rev. D72 (2005) 073005; J. C. Montero, C. A. de S.

Pires and V. Pleitez, Phys. Rev. D, 65 (2002) 095001.

[9] For some recently papers see A. G. Akeroyd and M. Aoki, Phys. Rev. D72 (2005) 035011; D.

Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 95 (2005) 0151801; ibid 93 (2004) 221802;

V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 93 (2004) 141801; P. Achard et al.

(L3 Collaboration), Phys. Lett. B 576 (2003) 18; G. Abbiendi et al. (OPAL Collaboration),

Phys. Lett. B 577 (2003) 93.

[10] J. C. Montero, F. Pisano and V. Pleitez, Phys. Rev. D 47 (1993) 2918; H. N. Long, Phys.

Rev. D 59 (1996) 437; R. Foot, H. N. Long and T. A. Tran, Phys. Rev. D 50 (1994) 34.

[11] V. Pleitez and M. D. Tonasse, Phys. Rev. D 48 (1993) 5274.

[12] M. D. Tonasse, Phys. Lett. B 381 (1996) 191.

[13] P. V. Dong, H. L. Long and D. T. Nhung, Phys. Rev. D 73 (2006) 035004; R. A. Diaz, R.

Martinez, F. Ochoa, Phys. Rev. D 69 (2006) 095009 and references cited therein.

[14] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592 (2004) 1.

[15] J. E. Cieza Montalvo and M. D. Tonasse, Nucl. Phys. B623 (2002) 325.

[16] J. E. Cieza Montalvo and M. D. Tonasse, Phys. Rev. D 71 (2005) 095015.

[17] M. Carena, A. Daleo, B. A. Dobrescu and T. M. P. Tait, Phys. Rev. D 70 (2004) 093009;

V. M. Abazov et al. (D0 Collaboration) Phys. Rev. Lett. 87 (2001) 061802; T. Pratt (for the

CDF Collaboration), talk at the SUSY 2004 Conference, June 2004.

[18] A. Freitas, Phys. Rev. D 70 (2004) 015008.

14

http://arXiv.org/abs/hep-ph/9610237


APPENDIX A: PARTIAL WIDTHS

In this Appendix we present the partial widths for Higgs decays from the Eqs. (23) and

(24). We define

R (a, b; x) =
1

16πx3/2

√

[x− (ma +mb)2] [x− (ma −mb)2] (A1)

and we obtain the partial widths for H0
3 , with

√
s = mH0

3
as

Γ0
JiJi

= 3R (Ji, Ji; s)

(

mJi

vχ

)2
(

m2
H0

3

− 2m2
Ji

)

, (A2a)

Γ0
P+P− = R

(

P+, P−; s
)

(

mP

vχ

)2
(

m2
H0

3
− 2mP

)

, (A2b)

Γ0
H0

1
H0

2

= R
(

H0
1 , H

0
2 ; s
)

[4 (λ5 − λ6) cωvρvχ + f (cωvη − sωvρ)]
2 , (A2c)

Γ0
H−

1
H+

1

= R
(

H+
1 , H

+
1 ; s
)

[2vχ (λ5sωvρ + λ6cωvη) + fcωvρ]
2 , (A2d)

Γ0
H−

2
H+

2

= R
(

H+
2 , H

+
2 ; s
)

[−2vχ (λ5cωvη + λ6sωvρ) + fsωvη]
2 , (A2e)

Γ0
H−

1
H+

2

= R
(

H+
1 , H

+
2 ; s
)

[(λ6 − λ5) cωvρvχ + f (sωvρ − cωvη)] , (A2f)

Γ0
U−−U++ =

g4vχ

2
R
(

U±±, U±±; s
)

{

3 −
(

mH0
3

mU++

)2
[

1 −
(

mH0
3

2mU++

)2
]}

, (A2g)

Γ0
H−−H++ = 4vχR

(

H±±, H±±; s
) [

(λ6 + λ9) s
2
ϕ + (2λ3 + λ9) c

2
ϕ

]

, (A2h)

where Γ0
XY ≡ Γ (H0

3 → XY ). Finally we present the partial widths for the H−− decays,

with
√
s = mH++ ,

Γ++
J1qd,s,b

= 3R (J1, q; s)

(

mqsϕ

vη

)2
(

m2
H++ −m2

J1
−m2

d,s,b

)

, (A3a)

Γ++
qu,c,tJ2,3

= 3R (J2,3, q; s)

(

mJ2,3
cϕ

vχ

)2
(

m2
H++ −m2

J2,3
−m2

u,c,t

)

, (A3b)

Γ++

J2,3qu,c,t
= 3R (J2,3, q; s)

(

m2
qu,c,t

sϕ

vη

)2
(

m2
H++ −m2

J2,3
−m2

u,c,t

)

, (A3c)

Γ++
e−P− =

R (e, P ; s)

4

(

mesϕ

vη

)2
(

m2
H++ −m2

e −m2
P

)

, (A3d)

Γ++
e+P+ =

R (e, P ; s)

4

(

mP cϕ
vχ

)2
(

m2
H++ −m2

e −m2
P

)

, (A3e)

Γ++

W−H−
2

=
R
(

W,H−
2 ; s
)

32

(

ecϕcφ
sin θWmW

)2

×

×
{

(

m2
H++ −m2

W

)2
+m2

H+

2

[

m2
H+

2

−
(

m2
H++ +m2

W

)

]}

, (A3f)

Γ++

H−
1

H−
2

= R
(

H−
2 , H

−
2 ; s
) {[

(λ7 + λ9) s
2
ω + (λ7 + λ8) c

2
ω

]

sφsϕ+
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+
(λ8 − λ9) cωcφvρ + fsωsφ

√

v2
η + v2

χ

}

, (A3g)

Γ++
U−−γ =

3

4πmH++

(

e2cϕvχ

sin2 θW

)2
[

1 −
(

mU++

mH++

)2
]

, (A3h)

Γ++
U−−H0

1

=
R (U−−, H0

1 ; s)

32

(

ecϕvχ

mU++vW sin θW

)2

×

×
{

(

m2
H++ −m2

U++

)2
+m2

H0
1

[

m2
H0

1

− 2
(

m2
H++ +m2

U−−

)

]}

, (A3i)

Γ++
U−−H0

2

=
R (U−−, H0

2 ; s)

32

(

ecφvρ

mU++vW sin θW

)2

×

×
{

(

m2
H++ −m2

U−−

)2
+m2

H0
2

[

m2
H0

1

− 2
(

m2
H++ +m2

U++

)

]}

, (A3j)

Γ++
U−−H0

3

=
R (U−−, H0

3 ; s)

32

(

ecϕ
mU++ sin2 θW

)2

×

×
{

(

m2
H++ −m2

U++

)2
+m2

H0
3

[

m2
H0

3

− 2
(

m2
H++ +m2

U++

)

]}

, (A3k)

Γ++
U−−Z = R

(

U−−, Z; s
)

(

e2cϕvχ

cos θ

)2

×

×
[

5 +

(

m2
H++ −m2

Z

)2
+m2

U++

(

m2
U++ − 2m2

H++

)

2m2
U++m2

Z

]

, (A3l)

Γ++
U−−Z′ =

R (U−−, Z ′; s)

12
(

sin2 θW − 1
) (

4 sin2 θW − 1
)

[

evηvχ

(

10 sin2 θW − 1
)

sin2 θW

]2

×

×
[

5 +

(

m2
H++ −m2

Z′

)2
+m2

U++

(

m2
U++ − 2m2

H++

)

2m2
U++m2

Z′

]

, (A3m)

Γ++

V −H−
1

= R
(

V −, H−
1 ; s
)

(

evρsϕ

vW sin θW

)2

×

×
{

(

m2
H++ −m2

V

)2
+m2

H0
1

[

m2
H+

1

− 2
(

m2
H++ +m2

V

)

]}

. (A3n)

Here, Γ++
XY ≡ Γ (H++ → XY ).
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APPENDIX B: 3-3-1 PARTICLE MASSES

In this Appendix we present the expressions of gauge, Higgs boson and fermion masses

predicted in 3-3-1 energy scale in terms of the VEVs and the parameters of the potential.

m2
H0

1

≈ 4
λ2v

4
ρ − 2λ1v

4
η

v2
η − v2

ρ

, m2
H0

2

≈ v2
W

2vηv2
ρ

v2
χ, m2

H0
3

≈ −4λ3v
2
χ, (B1a)

m2
h = − fvχ

vηvρ

[

v2
W +

(

vηvρ

vχ

)2
]

, m2
H±

1

=
v2

W

2vηvρ
(fvχ − 2λ7vηvρ) , (B1b)

mH±
2

=
v2

η + v2
χ

2vηvχ
(fvρ − 2λ8vηvχ) , m2

H±± =
v2

ρ + v2
χ

2vρvχ
(fvη − 2λ9vρvχ) , (B1c)

m2
W =

1

2

(

evW

sW

)2

, m2
V =

(

e

sW

)2 v2
η + v2

χ

2
, m2

U =

(

e

sW

)2 v2
ρ + v2

χ

2
, (B1d)

m2
Z ≈

(

evη

sW

)2
1

2 (1 − sW )
, m2

Z′ ≈
(

evχ

sW

)2
2 (1 − s2

W )

3 (1 − 4s2
W )

. (B1e)

In the calculations of the Ref. [12] the following conditions in imposed:

λ4 ≈ 2
λ2v

2
ρ − λ1v

2
η

v2
η − v2

ρ

, λ5v
2
η + 2λ6v

2
ρ ≈ −vηvρ

2
. (B2)

From the Lagrangean (9a) we can see that me, mµ, mτ ∝ vρ and mE , mM , mT ∝ vχ. Con-

cerning the ordinary quarks the masses can be obtained from the Lagrangean (9b) taking

into account mu ≪ mc ≪ mt and md ≪ ms ≪ mb. Therefore, we have

mu =
Gu

1 vηvρ

Gu
2 vρ + Gu

3 vη
, mc =

Gc
1vρ + Gc

2vη

Gc
3vη + Gc

4vρ
vρ, mt = Gt

1vη + Gt
2vρ, (B3a)

md =
Gd

1vρvη

Gd
2vη + Gd

3vρ

, ms =
Gs

1vη + Gs
2vρ

Gs
3vρ + Gs

4vη
vη, mb = Gb

1vρ + Gb
2vη, (B3b)

and from the Lagrangean (9c) the heavy quark masses are mJ1
, mJ2

, mJ3
∝ vχ. In Eqs. (B3)

the parameters Gq
β , q = u, c, t, d, s, b and β = 1, 2, 3, 4 are functions of the Yukawa couplings.

17



Xqq H��H++(a)
g
gq

qq H01;2;3 H��H++(b)

18



FIG. 1: Feynman diagrams for production of doubly charged Higgs bosons via (a) Drell-Yan

process, where X = γ, Z,Z ′,H0
1 ,H0

2 and (b) gluon-gluon fusion.

FIG. 2: Total cross section for the process pp → H−−H++ as a function of mH±± for f = 0 GeV

at
√

s = 14000 GeV for Drell-Yan (solid line) and Gluon-Gluon fusion (dot-dash line).
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FIG. 3: Total cross section for the process pp → H−−H++ as a function of mH±± for f = −130

GeV at
√

s = 14000 GeV for Drell-Yan (solid line) and Gluon-Gluon fusion (dot-dash line).
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