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Abstract

The following is a simple overview of a SU(3)L⊗U(1)N (3-3-1 for short) electroweak model. The

model can be better seen in References within this small introduction.
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I. OVERVIEW OF THE MODEL

The underlying eletroweak symmetry group is SU(3)L⊗U(1)N , where N is the quantum

number of the U(1) group. Therefore, the left-handed lepton matter content is
(

ν ′a `′a L′a

)T

L

transforming as (3, 0), where a = e, µ, τ is a family index (we are using primes for the

interaction eigenstates). L′aL are lepton fields which can be the charge conjugates `′aR
C [1, 2]

or the antineutrinos ν ′La
C or heavy leptons P ′+

aL

(
P ′+

aL = E ′+
L ,M ′+

L , T ′+
L

)
[3].

The model of Ref. [3] has the simplest scalar sector of the class of 3-3-1 Models. In this

version the charge operator is given by

Q

e
=

1

2

(
λ3 −

√
3λ8

)
+ N, (1)

where λ3 and λ8 are the diagonal Gell-Mann matrices and e is the elementary electric charge.

The right-handed charged leptons are introduced in singlet representation of SU(3)L as

`′−aR ∼ (1,−1) and P ′+
aR ∼ (1, 1).

The quark sector is given by

Q1L =




u′1

d′1

J1




L

∼
(
3,

2

3

)
, QαL =




d′α

u′α

J ′α




L

∼
(
3∗,−1

3

)
, (2)

where α = 2, 3, J1 and Jα are exotic quarks with electric charge 5/3 and −4/3 respectively.

It must be notice that the first quark family transforms differently from the two others under

the gauge group, which is essential for the anomaly cancellation mechanism [1, 2].

The physical fermionic eigenstates rise by the transformations

`′−aL(R) = A
L(R)
ab `−bL(R), P ′+

aL(R) = B
L(R)
ab P+

bL(R), (3a)

U ′
L(R) = UL(R)UL(R), D′

L(R) = DL(R)DL(R), J ′L(R) = J L(R)JL(R), (3b)

where UL(R) =
(

u c t
)

L(R)
, DL(R) =

(
d s b

)
L(R)

, JL(R) =
(

J1 J2 J3

)
L(R)

and AL(R),

BL(R), UL(R), DL(R), J L(R) are arbitrary mixing matrices.

The minimal scalar sector contains the three scalar triplets

η =




η0

η−1

η+
2


 ∼ (3, 0) , ρ =




ρ+

ρ0

ρ++


 ∼ (3, 1) , χ =




χ−

χ−−

χ0


 ∼ (3,−1) . (4)
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The most general, gauge invariant and renormalizable Higgs potential, which conserves the

leptobaryon number [5], is

V (η, ρ, χ) = µ2
1η
†η + µ2

2ρ
†ρ + µ2

3χ
†χ + λ1

(
η†η

)2
+ λ2

(
ρ†ρ

)2
+ λ3

(
χ†χ

)2
+

+
(
η†η

) [
λ4

(
ρ†ρ

)
+ λ5

(
χ†χ

)]
+ λ6

(
ρ†ρ

) (
χ†χ

)
+ λ7

(
ρ†η

) (
η†ρ

)
+

+λ8

(
χ†η

) (
η†χ

)
+ λ9

(
ρ†χ

) (
χ†ρ

)
+

1

2

(
fεijkηiρjχk + H. c.

)
(5)

.

The neutral components of the scalars triplets (4) develop non zero vacuum expectation

values (VEV’s) 〈η0〉 = vη, 〈ρ0〉 = vρ and 〈χ0〉 = vχ, with v2
η + v2

ρ = v2
W = (246 GeV)2. The

pattern of symmetry breaking is SU(3)L⊗U(1)N

〈χ〉7−→ SU(2)L⊗U(1)Y

〈η,ρ〉7−→ U(1)em. Therefore,

we can expect vχ À vη, vρ. In the potential (5), f and µj (j = 1, 2, 3) are constants with

dimension of mass and the λi (i = 1, . . . , 9) are adimensional constants. The masses of the

Higgs bosons were calculated by shifting the neutral fields of the potential (5) around its

minimum as ϕ = vϕ + ξϕ + iζϕ, with ϕ = η0, ρ0, χ0 and diagonalizing the bilinear terms.

These procedures are showed in Ref. [6] under the conditions vχ ≈ −f , leading a following

results for the masses of the neutral physical scalars

m2
H0

1
≈ 4

λ2v
4
ρ − 2λ1v

4
η

v2
η − v2

ρ

, m2
H0

2
≈ v2

W v2
χ

2vηvρ

, m2
H0

3
≈ −λ3v

2
χ, m2

h = − fvχ

vηvρ

[
v2

W +

(
vηvρ

vχ

)2
]

,

(6a)

for the singly charged ones

m2
±1 =

v2
W

2vηvρ

(fvχ − 2λ7vηvρ) , m2
±2 =

v2
η + v2

χ

2vηvχ

(fvρ − 2λ8vηvχ) , (6b)

and for the doubly charged Higgs bosons

m2
±± =

v2
ρ + v2

χ

2vρvχ

(fvη − 2λ9vρvχ) . (6c)

After the process of diagonalization of the Higgs potential (5) we obtain the physical

neutral scalar eigenstates H0
i (i = 1, 2, 3) and h which are related to the shifted fields as


 ξη

ξρ


 ≈ 1

vW


 cω sω

sω cω





 H0

1

H0
2


 , ξχ ≈ H0

3 , ζχ ≈ ih, (7a)
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where cω = cos ω = vη/
√

v2
η + v2

ρ and sω = sin ω. For the charged physical eigenstates H±
1 ,

H±
2 and H±± we have

η+
1 = sωH+

1 , η+
2 = sϕH+

2 , ρ+ = cωH+
1 , χ+ = cϕH+

2 , (7b)

ρ++ = sφH
++, χ++ = cφH

++, (7c)

with cϕ = cos ϕ = vη/
√

v2
η + v2

χ, sϕ = sin ϕ, cφ = cos φ = vρ/
√

v2
ρ + v2

χ and sφ = sin φ.

The Yukawa interactions for leptons and quarks are, respectively,

−L` = GabψaL`′bRρ + G′
abψaLP ′

bRχ + H. c., (8a)

−LQ = Q1L

∑
i

[
Gu

1iU
′
iRη + Gd

1iD
′
iRρ +

∑
α

QαL

(
F u

αiU
′
iRρ∗ + F d

αiD
′
iRη∗

)
]

+

+GjQ1LJ1Rχ +
∑

αβ

Gj
αβQαLJ ′βRχ∗ + H. c. (8b)

In Eqs. (8) a, b = e, µ, τ and α = 2, 3. We are assuming the masses of exotic fermions

are of order of vχ.

Beyond the standard particles γ, Z and W± the model predicts, in the gauge sector, one

neutral (Z ′), two single charged (V ±) and two double charged (U±±) gauge bosons. The

interactions between the gauge and Higgs bosons are given by the covariant derivative

Dµϕi = ∂µϕi − ig

(
~Wµ.

~λ

2

)j

i

ϕj − ig′NϕϕiBµ, (9)

where Nϕ are the U(1) charges for the ϕ Higgs triplets (ϕ = η, ρ, χ). ~Wµ and Bµ are field

tensors of SU(2) and U(1), respectively, ~λ are Gell-Mann matrices and g and g′ are coupling

constants for SU(2) and U(1), respectively. Diagonalization of the covariant derivative (9),

after symmetry breaking, furnishes the masses of the exotic gauge bosons, i. e.,

m2
Z′ ≈

(
evχ

sW

)2
2(1− s2

W )

3(1− 4s2
W )

, m2
V =

(
e

sW

)2 v2
η + v2

χ

2
, m2

U =

(
e

sW

)2 v2
ρ + v2

χ

2
, (10)

where sW = sin θW .

Introducing the eigenstates (3) and (7) in the Lagrangeans (8) we obtain the Yukawa

interactions as function of the physical eigenstates, i. e.,

−L`p =
1

2

{
1

vρ

[
cωνUνeH+

1 +
(
vρ + sωH0

1 − cωH0
2

)
e− + sφP+UPeH++

]
M eGRe−+
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+
1

vχ

[
cωνVνP H−

2 + cφe−VeP H−− +
(
vχ + H0

3 + ih
)
P+

]
MEGRP+

}
+

+H. c., (11a)

−LQp =
1

2

{
UGR

[
1 +

[
sω

vρ

+

(
cω

vη

+
sω

vρ

)
Vu

]
H0

1 +

[
−cω

vρ

+

(
sω

vη

− cω

vρ

)
Vu

]
H0

2

]
MuU+

+DGR

[
1 +

[
cω

vη

+

(
sω

vρ

− cω

vη

)
VD

]
H0

1 +

[
sω

vη

−
(

cω

vρ

+
sω

vη

)
VD

]
H0

2

]
MdD+

+ UGR

[
sω

vη

V †
CKMH−

1 +

(
cω

vη

− sω

vρ

)
VudH+

1

]
MdD+

+ DGR

[
cω

vρ

VCKMH+
1 +

(
sω

vη

− cω

vρ

)
Vud†H−

1

]
MuU

}
+ H. c., (11b)

−LJ =
1

2

[
JGRJ L† (NULMuU +RDLMdD

)
+

+
(
UUL†X1 + DDL†X2 + JJ L†X0

)J LMJGRJ
]
+ H. c., (11c)

where GR = 1+γ5, V U
L V D

L = VCKM, is the Cabibbo-Kobayashi-Maskawa mixing matrix, Uνe,

UPe, Vνe, VeP , Vu = V U
L ∆V U†

L , Vd = V D
L ∆V D†

L and Vud = V U
L ∆V D†

L are arbitrary mixing ma-

trices, M e = diag
(

me mµ mτ

)
, MP = diag

(
mE mM mT

)
, Mu = diag

(
mu mc mt

)
,

Md = diag
(

md ms mb

)
and MJ = diag

(
mJ1 mJ2 mJ3

)
. In Eq. (11c) we have defined

N =




sωH+
2 /vη 0 0

0 sφH
−−/vρ sφH

−−/vρ

0 sφH
−−/vρ sφH

−−/vρ


 , X0 ≈ vχ + H0

3 + ih

vχ




1 0 0

0 1 1

0 1 1


 , (12a)

R =




sφH
++/vρ 0 0

0 sωH−
2 /vη sωH−

2 /vη

0 sωH−
2 /vη sωH−

2 /vη


 , X1 =

1

vχ




cωH−
2 0 0

0 cφH
++ cφH

++

0 cφH
++ cφH

++


 , (12b)

X2 =
1

vχ




cφH
−− 0 0

0 cωH+
2 cωH+

2

0 cωH+
2 cωH+

2


 . (12c)

It should be noticed that non standard field interactions violate leptonic number, as can

be seen from the Lagrangians (8) and (9). However the total leptonic number is conserved
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