The Charged Higgs Boson: Codes and Tools

Sven Heinemeyer, IFCA (CSIC, Santander)

Uppsala, 09/2008

- 1. Motivation
- 2. Classification of codes and tools
- 3. Examples for higher-order corrections
- 4. Conclusions

1. Motivation

Higgs mechanism in the SM case:

$$\mathcal{L}_{SM} = \underbrace{m_d \bar{Q}_L \Phi d_R}_{d-quark \text{ mass}} + \underbrace{m_u \bar{Q}_L \Phi_c u_R}_{u-quark \text{ mass}}$$

$$u-quark \text{ mass}$$

$$u-quark \text{ mass}$$

$$Q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L, \quad \Phi_c = i\sigma_2 \Phi^{\dagger}, \quad \Phi \to \begin{pmatrix} 0 \\ v \end{pmatrix}, \quad \Phi_c \to \begin{pmatrix} v \\ 0 \end{pmatrix}$$

In SUSY: term $\bar{Q}_L \Phi^{\dagger}$ not allowed

Superpotential is holomorphic function of chiral superfields, i.e. depends only on φ_i , not on φ_i^*

 \Rightarrow $H_d(\equiv H_1)$ and $H_u(\equiv H_2)$ needed to give masses to down- and up-type fermions

In general: two Higgs doublets appear 'more natural' than only one

Models with charged Higgs bosons:

- 1. Two Higgs Doublet Model (THDM) \rightarrow no code(s) available
- 2. Minimal Supersymmetric Standard Model (MSSM) \rightarrow code(s) exist
- 3. MSSM with extra singlet (NMSSM) \rightarrow code(s) exist
- 4. MSSM with more extra singlets \rightarrow no code(s) available
- 5. SM/MSSM with Higgs triplets \rightarrow no code(s) available

6. ...

"code exists" = working computer code publicly available

THDM: Enlarged Higgs sector: Two Higgs doublets

$$\begin{split} V &= \frac{\lambda_1}{2} \left(H_1^{\dagger} H_1 \right)^2 + \frac{\lambda_2}{2} \left(H_2^{\dagger} H_2 \right)^2 + \lambda_3 \left(H_1^{\dagger} H_1 \right) \left(H_2^{\dagger} H_2 \right) + \lambda_4 \left(H_1^{\dagger} H_2 \right) \left(H_2^{\dagger} H_1 \right) \\ &+ \left[\frac{\lambda_5}{2} \left(H_1^{\dagger} H_2 \right) \left(H_1^{\dagger} H_2 \right) + \lambda_6 \left(H_1^{\dagger} H_1 \right) \left(H_1^{\dagger} H_2 \right) + \lambda_7 \left(H_2^{\dagger} H_2 \right) \left(H_1^{\dagger} H_2 \right) \right] + \text{h.c.} \\ &- \frac{1}{2} m_1^2 \left(H_1^{\dagger} H_1 \right) - \frac{1}{2} m_2^2 \left(H_2^{\dagger} H_2 \right) - \frac{1}{2} m_{12}^2 \left(H_1^{\dagger} H_2 \right) + \text{h.c.} \end{split}$$

 $\lambda_{1,2,3,4}$, m_1^2 , m_2^2 : real parameters $\lambda_{5,6,7}$, m_{12}^2 : complex parameters

14 parameters \Rightarrow 11 independent

 $\Rightarrow M_{H^\pm}$ can be chosen as free parameter only very few restrictions in the THDM

MSSM: Enlarged Higgs sector: Two Higgs doublets

$$H_1 = \begin{pmatrix} H_1^1 \\ H_1^2 \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 + (\phi_1 + i\chi_1)/\sqrt{2} \\ \phi_1^- \end{pmatrix}$$
$$H_2 = \begin{pmatrix} H_2^1 \\ H_2^2 \end{pmatrix} = \begin{pmatrix} \phi_2^+ \\ \psi_2^+ + (\phi_2 + i\chi_2)/\sqrt{2} \end{pmatrix}$$

 $V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$

$$+\underbrace{\frac{g'^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

Goldstone bosons: G^0, G^{\pm}

Input parameters: (to be determined experimentally)

$$\tan \beta = \frac{v_2}{v_1}, \qquad M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$$

MSSM: Enlarged Higgs sector: Two Higgs doublets with \mathcal{CP} violation

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{1}^{+} \\ \phi_{2}^{+} \\ \psi_{2}^{-} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix} e^{i\xi}$$

 $V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$

$$+\underbrace{\frac{g'^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

2 CP-violating phases: ξ , $\arg(m_{12}) \Rightarrow$ can be set/rotated to zero

Input parameters: (to be determined experimentally)

$$\tan\beta = \frac{v_2}{v_1}, \qquad M_{H^{\pm}}^2$$

In lowest order:

Input parameters: (to be determined experimentally)

$$\tan \beta = \frac{v_2}{v_1}, \qquad M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$$

 \Rightarrow $m_h,~m_H,$ mixing angle $\alpha,~m_{\rm H^\pm}$: no free parameters, can be predicted

In lowest order: $m_{H^{\pm}}^{2} = M_{A}^{2} + M_{W}^{2}$ Keep in mind: higher-order corrections \Rightarrow Test of the model!

Necessary:

- discover the charged Higgs at the LHC or at the ILC
- measure its mass/characteristics at the LHC or at the ILC
- compare with theory prediction for $M_{H^{\pm}}$ /other characteristics

2. Classification of codes and tools

THDM: no codes for charged Higgs boson in THDM found ...

MSSM: many codes, detailed list follows ...

NMSSM: NMSSMTools [U. Ellwanger, C. Hugonie] contains NMSpec, NMHdecay, ...

 $M_{H^{\pm}}$: one-loop corrections

charged Higgs couplings, decay widths:

leading logarithmic corrections to top- and bottom Yukawa couplings included

\rightarrow concentrate on MSSM from now on

Charged Higgs boson codes in the MSSM (I):

- RGE codes: SoftSUSY, Suspect, Spheno, Isasusy, ...
 - \rightarrow corrections to M_{H^\pm} one-loop
 - $\rightarrow H^{\pm}$ decays: effective couplings
 - \rightarrow their strength: provide tree-level parameters at EW scale link to other codes via SLHA(2)
- Mass calculators, decay packages: FeynHiggs, CPSuperH, Hdecay, ...
 - \rightarrow corrections to $M_{H^{\pm}}$: one- or two-loop (FeynHiggs, Hdecay only; CPSuperH has $M_{H^{\pm}}$ as input)
 - $\rightarrow H^{\pm}$ decays: effective couplings, Δ_b corrections
 - \Rightarrow more details below
- Charged Higgs LHC production cross sections: [O. Brein] [T. Plehn]

 \rightarrow not really public yet (still waiting ...)

 \Rightarrow more in the next talk?

Charged Higgs boson codes in the MSSM (II):

• Event generators: Pythia, Herwig, Sherpa, ...

only few corrections for $M_{H^{\pm}}$, $\Gamma_{H^{\pm}}$ \rightarrow link to mass calculators, decay packages via SLHA(2)

Indirect constraints via *B*-physics observables, ...:
 SuperIso, Isidori/Paradisi (genuine BPO codes)
 Micromegas, CPSuperH, FeynHiggs, ... (BPO as additional check)

Comparison of mass calculators:

FeynHiggs: [*T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein*] rMSSM: full one-loop, $\mathcal{O}(\alpha_t \alpha_s)$ two-loop, Δ_b corrections cMSSM: $M_{H^{\pm}}$ is input, corrections go to $M_{h_1}, M_{h_2}, M_{h_3}$

Hdecay: [*M. Spira, A. Djouadi, J. Kalinowski, M. Mühlleitner*] rMSSM: link to other codes

CPSuperH: [J. Lee, M. Pilaftsis, S. Choi, M. Carena, M. Drees, J. Ellis, C. Wagner] cMSSM: $M_{H^{\pm}}$ is input, corrections go to $M_{h_1}, M_{h_2}, M_{h_3}$ many one-loop, RGE improved for two-loop, Δ_b corrections

 \Rightarrow Examples for two-loop and Δ_b in the next section

Hdecay:

main correction: SM QCD + $\Delta_{b,real}$ for bottom Yukawa coupling

- total decay width Γ_{tot}
- $BR(H^+ \rightarrow f^{(*)}\bar{f}')$: decay to SM fermions
- $BR(H^+ \rightarrow h_i W^{+(*)})$: decay to gauge and Higgs bosons
- $BR(H^+ \rightarrow \tilde{f}_i \tilde{f}'_j)$: decay to sfermions
- $BR(H^+ \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_i^+)$: decay to charginos and neutralinos
- $BR(t \rightarrow H^+\bar{b})$ for $M_{H^\pm} \leq m_t$ (H^\pm production at Tevatron/LHC)

CPSuperH:

main correction: SM QCD + $\Delta_{b,complex}$ for bottom Yukawa coupling

- total decay width Γ_{tot}
- $BR(H^+ \rightarrow f^{(*)}\bar{f}')$: decay to SM fermions
- $BR(H^+ \rightarrow h_i W^{+(*)})$: decay to gauge and Higgs bosons
- $BR(H^+ \rightarrow \tilde{f}_i \tilde{f}'_j)$: decay to sfermions
- $BR(H^+ \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_i^+)$: decay to charginos and neutralinos
- Higgs triple/quartic self-couplings (for $H^{\pm} H^{\mp}$, incl. corr.)

FeynHiggs:

main correction: SM QCD + $\Delta_{b,complex}$ for bottom Yukawa coupling

- total decay width Γ_{tot}
- $BR(H^+ \rightarrow f^{(*)}\overline{f'})$: decay to SM fermions
- $BR(H^+ \rightarrow h_i W^{+(*)})$: decay to gauge and Higgs bosons
- $BR(H^+ \rightarrow \tilde{f}_i \tilde{f}'_i)$: decay to sfermions
- $BR(H^+ \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_i^+)$: decay to charginos and neutralinos
- Higgs triple self-couplings (for $H^{\pm} H^{\mp}$, incl. corr.)
- H^+ production cross sections at LHC: [*T. Plehn et al.*] $\otimes \Delta_b$ corr.
- $BR(t \rightarrow H^+ \overline{b})$ for $M_{H^{\pm}} \leq m_t$ (H^{\pm} production at Tevatron/LHC)

3. Examples for higher-order corrections

MSSM: input: M_A and $\tan \beta$

output: neutral and charged Higgs masses, ...

Tree-level:

$$m_{H^{\pm}}^2 = M_A^2 + M_W^2$$

Higher-order: $M_{H^{\pm}}^2$ is solution of

$$p^2 - m_{H^{\pm}}^2 + \hat{\Sigma}_{H^+H^-}(p^2) = 0$$

with

$$\widehat{\Sigma}_{H^+H^-}(p^2) = \Sigma_{H^+H^-}(p^2) + \delta Z_{H^+H^-}(p^2 - m_{H^{\pm}}^2) - \delta m_{H^{\pm}}^2$$

The following results are based on/taken from [*M. Frank, T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '08**] (* hopefully)

 \tilde{t}/\tilde{b} sector of the MSSM: (scalar partner of the top/bottom quark)

Stop, sbottom mass matrices $(X_t = A_t - \mu^* / \tan \beta, X_b = A_b - \mu^* \tan \beta)$:

$$\mathcal{M}_{\tilde{t}}^2 = \begin{pmatrix} M_{\tilde{t}_L}^2 + m_t^2 + DT_{t_1} & m_t X_t^* \\ m_t X_t & M_{\tilde{t}_R}^2 + m_t^2 + DT_{t_2} \end{pmatrix} \xrightarrow{\theta_{\tilde{t}}} \begin{pmatrix} m_{\tilde{t}_1}^2 & 0 \\ 0 & m_{\tilde{t}_2}^2 \end{pmatrix}$$

$$\mathcal{M}_{\tilde{b}}^2 = \begin{pmatrix} M_{\tilde{b}_L}^2 + m_b^2 + DT_{b_1} & m_b X_b^* \\ m_b X_b & M_{\tilde{b}_R}^2 + m_b^2 + DT_{b_2} \end{pmatrix} \xrightarrow{\theta_{\tilde{b}}} \begin{pmatrix} m_{\tilde{b}_1}^2 & 0 \\ 0 & m_{\tilde{b}_2}^2 \end{pmatrix}$$

mixing important in stop sector (also in sbottom sector for large tan β) soft SUSY-breaking parameters A_t, A_b also appear in $\phi - \tilde{t}/\tilde{b}$ couplings

$$SU(2)$$
 relation $\Rightarrow M_{\tilde{t}_L} = M_{\tilde{b}_L}$

 $\Rightarrow \text{ relation between } m_{\tilde{t}_1}, m_{\tilde{t}_2}, \theta_{\tilde{t}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}, \theta_{\tilde{b}}$

One-loop (complete):

$$\hat{\Sigma}_{H^+H^-}^{(1)}(p^2) = \Sigma_{H^+H^-}^{(1)}(p^2) + \delta Z_{H^+H^-}^{(1)}(p^2 - m_{H^\pm}^2) - \delta m_{H^\pm}^{(1)2}$$

with

$$\begin{split} \delta Z_{H^+H^-}^{(1)}(p^2) &= \sin^2\beta \, \delta Z_{\mathcal{H}_1} + \cos^2\beta \, \delta Z_{\mathcal{H}_2} \\ \delta Z_{\mathcal{H}_1} &= \delta Z_{\mathcal{H}_1}^{\overline{\mathsf{DR}}} = -\left[\mathsf{Re}\Sigma'_{HH|\alpha=0}\right]^{\mathsf{div}} \\ \delta Z_{\mathcal{H}_2} &= \delta Z_{\mathcal{H}_2}^{\overline{\mathsf{DR}}} = -\left[\mathsf{Re}\Sigma'_{hh|\alpha=0}\right]^{\mathsf{div}} \\ \delta m_{H^{\pm}}^{(1)2} &= \delta M_W^{(1)2} + \delta M_A^{(1)2} \\ \delta M_A^{(1)2} &= \Sigma_{AA}^{(1)}(M_A^2) \end{split}$$

Furthermore:

$$m_b \rightarrow \frac{\overline{m}_b}{1+\Delta_b}$$

$$\Delta_b = \frac{2\alpha_s}{3\pi} m_{\tilde{g}} \mu \tan\beta \times I(m_{\tilde{b}_1}, m_{\tilde{b}_2}, m_{\tilde{g}}) + \frac{\alpha_t}{4\pi} A_t \mu \tan\beta \times I(m_{\tilde{t}_1}, m_{\tilde{t}_2}, \mu)$$

One-loop (complete):

$$\hat{\Sigma}_{H^+H^-}^{(1)}(p^2) = \Sigma_{H^+H^-}^{(1)}(p^2) + \delta Z_{H^+H^-}^{(1)}(p^2 - m_{H^\pm}^2) - \delta m_{H^\pm}^{(1)2}$$

with

$$\begin{split} \delta Z_{H^+H^-}^{(1)}(p^2) &= \sin^2\beta \, \delta Z_{\mathcal{H}_1} + \cos^2\beta \, \delta Z_{\mathcal{H}_2} \\ \delta Z_{\mathcal{H}_1} &= \delta Z_{\mathcal{H}_1}^{\overline{\mathsf{DR}}} = -\left[\mathsf{Re}\Sigma'_{HH|\alpha=0}\right]^{\mathsf{div}} \\ \delta Z_{\mathcal{H}_2} &= \delta Z_{\mathcal{H}_2}^{\overline{\mathsf{DR}}} = -\left[\mathsf{Re}\Sigma'_{hh|\alpha=0}\right]^{\mathsf{div}} \\ \delta m_{H^{\pm}}^{(1)2} &= \delta M_W^{(1)2} + \delta M_A^{(1)2} \\ \delta M_A^{(1)2} &= \Sigma_{AA}^{(1)}(M_A^2) \end{split}$$

Furthermore:

$$m_b \ o \ {\overline m_b \over 1 + \Delta_b}$$

 \Rightarrow also main higher-order effect in $H^{\pm}tb$ coupling

 $\frac{\text{Two-loop:}}{\text{leading } \mathcal{O}(\alpha_t \alpha_s)}$

- only y_t^2 contributions

 $-g,g' \rightarrow 0$

– external momentum $\rightarrow 0$

$$\widehat{\Sigma}_{H^+H^-}^{(2)}(0) = \Sigma_{H^+H^-}^{(2)}(0) - \delta m_{H^\pm}^{(2)2}$$

with

$$\begin{split} \delta Z^{(2)}_{H^+H^-} &= 0 \\ \delta M^{(2)2}_W &= 0 \\ \delta m^{(2)2}_{H^{\pm}} &= \delta M^{(2)2}_A = \Sigma^{(2)}_{AA}(0) \end{split}$$

Contributions to the 2-loop self-energy:

2-loop self-energy diagrams:

new: H^{\pm} as external Higgs $\Rightarrow b/\tilde{b}$ enter (even diagrams without t/\tilde{t} : $H^{+}H^{-}\tilde{b}_{i}\tilde{b}_{j} \sim y_{t}^{2}$) \Rightarrow renormalization of b/\tilde{b} sector necessary

 $\mathcal{O}\left(\alpha_{t}\alpha_{s}\right)$ corrections in the FD approach

- only y_t^2 contributions
- $-g,g' \rightarrow 0$
- external momentum $\rightarrow 0$
- \Rightarrow Two-loop diagrams

new: H^{\pm} as external Higgs $\Rightarrow b/\tilde{b}$ enter (even diagrams without t/\tilde{t}) $\mathcal{O}\left(\alpha_{t}\alpha_{s}\right)$ corrections in the FD approach

- only y_t^2 contributions
- $-g,g' \rightarrow 0$
- external momentum $\rightarrow 0$
- \Rightarrow Two-loop diagrams

new: H^{\pm} as external Higgs $\Rightarrow b/\tilde{b}$ enter (even diagrams without t/\tilde{t})

Differences to neutral case:

 $\Rightarrow b/\tilde{b}$ enter

 \Rightarrow many more scales

but not as many parameters (SU(2))

\Rightarrow Renormalization . . .

... especially involved for b/\tilde{b} sector: bad choice can lead

to completely unreliable results [S.H., W. Hollik, H. Rzehak, G. Weiglein '04]

Old example: M_h as a function of tan β , $\mu < 0$:

[S.H., W. Hollik, H. Rzehak, G. Weiglein '04]

Numerical results:

- \rightarrow no-mixing scenario, with variation of
- $-M_A$: tree-level parameter
- $-\tan\beta$: tree-level parameter
- μ : enters via Δ_b

 $(m_h^{\text{max}} \text{ scenario similar, slightly smaller corrections})$

Experimental resolution:

 $M_{H^\pm}=$ 200 GeV: ${\rm LHC}:\Rightarrow \delta M_{H^\pm}\approx 1.5~{\rm GeV}$ ${\rm ILC}:\Rightarrow \delta M_{H^\pm}\approx 0.5~{\rm GeV}$

Higher masses:

$$LHC: \Rightarrow \delta M_{H^{\pm}} \approx 1 - 2\%$$

1-loop, $\tan\beta$ varied:

2-loop, $tan \beta$ varied:

2-loop, $tan \beta$ varied:

1-loop, μ varied:

 $t/\tilde{t}/b/\tilde{b}$ important \overline{m}_b important Δ_b important $non-t/\tilde{t}/b/\tilde{b}$ $\sim \log(M_{SUSY}/M_W)$ relevant non-sfermion

corrections small

4. Conclusinos (concentrate on MSSM)

• Charged MSSM Higgs boson:

mass and couplings predicted in terms of other model parameters ⇒ test of the model, parameter determination ⇒ needed for reliable prediction of phenomenology

- Many codes exist for RGEs, masses, decays, production XS, event generators, indirect constraints
- Main mass/decay codes: FeynHiggs, Hdecay, CPSuperH
 - some differences in mass calculations
 - some differences in decays and other features
- Higher-order corrections to M_{H^\pm} :

- 1L: all sectors relevant \Rightarrow full 1L necessary Δ_b corrections crucial - 2L $\mathcal{O}(\alpha_t \alpha_s)$: $\Delta M_{H^{\pm}} = 0.5 - 5$ GeV important for LHC/ILC precision

MSSM Higgs Physics at the LHC Theory meets Experiment in Santander (Spain)

