Higher order corrections to H^{\pm} production

Nikolaos Kidonakis

(Kennesaw State University)

- H^{\pm} production channels
- Higher-order corrections
- Charged Higgs production at the LHC

Charged Higgs: sure sign of new physics (MSSM or other 2HDM) LHC has good potential for discovery

Production processes

$bg \rightarrow tH^-$	Zhu ('01) [NLO QCD]; Belyaev, Garcia, Guasch, Sola ('01,'02) [1-loop SUSY];
($gg ightarrow ar{b}tH^-$)	Plehn ('02) [NLO QCD+SUSY]; Berger, Han, Jiang, Plehn ('03) [NLO QCD+SUSY];
	Jin, Li, Oakes, Zhu ('99) [Yukawa], ('00) [SUSY electroweak];
	Alwall, Rathsman ('04) [matching];
	Kidonakis ('04) [soft-gluons, approx NNLO], ('05) [approx NNNLO]
$gg \rightarrow H^+W^-$	Barrientos et al ('98,'00); Brein, Hollik, Kanemura ('00) [quark, squark loops];
$b\bar{b} ightarrow H^+W^-$	Hollik, Zhu ('01); Gao, Li, Li ('07) [NLO QCD]
	Eriksson, Hesselbach, Rathsman ('06) [decays of H^+, W^-]
$gg \rightarrow H^+H^-$	Jiang et al ('97); Krause, Plehn, Spira, Zerwas ('97); Brein, Hollik ('99) [LO loops]
$b ar{b} ightarrow H^+ H^-$	Hou et al ('05) [NLO]; Alves, Plehn ('05) [NLO]
$gg ightarrow b ar{b} H^+ H^-$	Moretti, Rathsman ('03) [LO]
$qq \rightarrow qqV^*V^* \rightarrow$	qqH^+H^- Moretti ('01) [LO]

Associated H^- and top quark production

LO: $bg \rightarrow tH^-$

Born cross section $\propto \alpha \alpha_s (m_h^2 \tan^2 \beta + m_t^2 \cot^2 \beta)$

use $\overline{\text{MS}} m_b$ in the coupling; $m_b = 0$ elsewhere

Associated H^- and top quark production

QCD corrections large

Reduced scale dependence

- **SUSY corrections significant**
- **Issues: bottom parton distribution**

gluon splitting to $b\bar{b}$ in collinear approximation

valid for small b-quark p_T

 $gg \rightarrow \bar{b}tH^-$

Matching [Alwall, Rathsman]

- Find reliable description for all *b*-quark p_T
- large p_T : use matrix elements
- small p_T : use parton showers
- simple adding gives double counting for small p_T

 $bg \rightarrow tH^-$

resums large logarithms $[\alpha_s \ln(\mu_F/m_b)]^n$ for small p_T

 $2 \rightarrow 3$ process described by gluon splitting times matrix element of $2 \rightarrow 2$ process

 $gg \rightarrow \bar{b}tH^-$

outgoing b-quark described by 2 \rightarrow 3 matrix element for large p_T

Match \rightarrow analytic double-counting subtraction term:

 $\sigma = \sigma_{2 \to 2} + \sigma_{2 \to 3} - \sigma_{\rm DC}$

[Alwall, Rathsman]

can be implemented in event generators (PYTHIA, HERWIG)

 \rightarrow smooth differential distributions

Production near threshold

```
b(p_b) + g(p_g) \longrightarrow t(p_t) + H^-(p_H)

Define s = (p_b + p_g)^2, t = (p_b - p_t)^2, u = (p_g - p_t)^2

and s_4 = s + t + u - m_t^2 - m_H^2

At threshold s_4 \rightarrow 0

Soft corrections \left[\frac{\ln^l(s_4/m_H^2)}{s_4}\right]_+
```

Near threshold soft corrections are dominant and provide excellent approximations to the full cross section

```
For the order \alpha_s^n corrections l \leq 2n-1
```

LL: I=2n-1

NLL: I=2n-2

Calculate NLO and NNLO corrections at NLL accuracy

The hadronic cross section

$$\sigma = \sum_{f} \int dx_1 dx_2 \, \phi_{f_1/p}(x_1, \mu_F) \, \phi_{f_2/\bar{p}}(x_2, \mu_F) \, \hat{\sigma}(s, t, u, \mu_F, \mu_R, \alpha_s)$$

Resummed cross section

Resummation follows from factorization properties of the cross section - performed in moment space

$$\hat{\sigma}^{res}(N) = \exp\left[\sum_{i} E^{f_i}(N_i)\right] \exp\left[\sum_{i} 2 \int_{\mu_F}^{\sqrt{s}} \frac{d\mu}{\mu} \gamma_{i/i}(N_i, \alpha_s(\mu))\right] \\ \times \exp\left[\sum_{i} 2 \int_{\mu_R}^{\sqrt{s}} \frac{d\mu}{\mu} \beta(\alpha_s(\mu))\right] H^{f_i f_j}(\alpha_s(\mu_R)) \\ \times \tilde{S}^{f_i f_j}\left(\alpha_s\left(\frac{\sqrt{s}}{\tilde{N}}\right)\right) \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}} \frac{d\mu}{\mu} 2\operatorname{Re}\Gamma_S^{f_i f_j}(\alpha_s(\mu))\right]$$

where

$$\sum_{i} E^{f_i}(N_i) = -\sum_{i} C_i \int_0^1 dz \frac{z^{N_i-1}-1}{1-z} \left\{ \int_{(1-z)^2}^1 \frac{d\lambda}{\lambda} \frac{\alpha_s(\lambda s)}{\pi} + \frac{\alpha_s((1-z)^2 s)}{\pi} \right\} + \mathcal{O}(\alpha_s^2)$$

 $C_i = C_F = (N_c^2 - 1)/(2N_c), B_q^{(1)} = 3C_F/4$ for quarks; $C_i = C_A = N_c, B_g^{(1)} = \beta_0/4$ for gluons

 Γ_S is the soft anomalous dimension - a matrix in color space

$$\Gamma_{S}^{(1)} = C_F \ln\left(\left(\frac{-t+m_t^2}{m_t\sqrt{s}}\right) + \frac{C_A}{2}\ln\left(\left(\frac{-u+m_t^2}{-t+m_t^2}\right) + \frac{C_A}{2}(1-i\pi)\right)$$

NNNLO expansions of resummed cross section

Invert back to momentum space and expand to arbitrary order

NLO soft gluon corrections

$$\hat{\sigma}^{(1)} = F^B \frac{\alpha_s(\mu_R^2)}{\pi} \left\{ c_3 \left[\frac{\ln(s_4/m_H^2)}{s_4} \right]_+ + c_2 \left[\frac{1}{s_4} \right]_+ + c_1^{\mu} \,\delta(s_4) \right\}$$

with $c_3 = 2(C_F + C_A)$

NNLO soft gluon corrections

$$\hat{\sigma}^{(2)} = F^B \frac{\alpha_s^2(\mu_R^2)}{\pi^2} \left\{ \frac{1}{2} c_3^2 \left[\frac{\ln^3(s_4/m_H^2)}{s_4} \right]_+ + \left[\frac{3}{2} c_3 c_2 - \frac{\beta_0}{4} c_3 \right] \left[\frac{\ln^2(s_4/m_H^2)}{s_4} \right]_+ + \cdots \right\}$$

NNNLO soft gluon corrections

$$\hat{\sigma}^{(3)} = F^B \frac{\alpha_s^3(\mu_R^2)}{\pi^3} \left\{ \frac{1}{8} c_3^3 \left[\frac{\ln^5(s_4/m_H^2)}{s_4} \right]_+ + \left[\frac{5}{8} c_3^2 c_2 - \frac{5}{24} \beta_0 c_3^2 \right] \left[\frac{\ln^4(s_4/m_H^2)}{s_4} \right]_+ + \cdots \right\}$$

Charged Higgs production at the LHC

various choices of central scale in the literature

K factors			
Mass (GeV)	NNLO-NLL	NNNLO-NLL	
200	1.34	1.47	
300	1.43	1.53	
400	1.49	1.59	
500	1.53	1.65	
600	1.57	1.69	
700	1.60	1.72	
800	1.63	1.75	
900	1.66	1.79	
1000	1.68	1.81	

N. Kidonakis, cH[±]arged 2008, Uppsala, September 2008

Scale dependence of the cross section

Reduced scale dependence over large range of scale $0.1 < \mu/m_{H^-} < 10$

 $\sigma_{\max}/\sigma_{\min} = 3.39$ 1.50 1.38 1.32 \uparrow \uparrow \uparrow \uparrow LO NLO-NLL NNLO-NLL NNNLO-NLL

N. Kidonakis, cH \pm arged 2008, Uppsala, September 2008

Dependence of the cross section on $\tan \beta$ and top quark mass

 $\tan\beta$ shape same for all curves

Mild m_t dependence

Associated H^+ and W^- production, $b\bar{b} \rightarrow H^+W^-$

Eriksson, Hesselbach, Rathsman ('06)

N. Kidonakis, cH[±]arged 2008, Uppsala, September 2008

Krause, Plehn, Spira, Zerwas ('97)

N. Kidonakis, cH[±]arged 2008, Uppsala, September 2008

Alves, Plehn ('05)

N. Kidonakis, cH \pm arged 2008, Uppsala, September 2008

 $gg \rightarrow b\bar{b}H^+H^-$

dominant pair production mode at large $\tan \beta$ relevant for triple-Higgs couplings consider signature: 4 *b*-jets + 2 *q*-jets+ τ + p_T^{miss}

Moretti, Rathsman ('03)

N. Kidonakis, cH[±]arged 2008, Uppsala, September 2008

Summary

- Several production processes for H^{\pm} at the LHC
- NLO QCD and SUSY corrections
- $bg \rightarrow tH^-$, $gg \rightarrow \bar{b}tH^-$ at the LHC matching
- $bg \rightarrow tH^-$ Soft and collinear corrections through NNNLO
- $bg \rightarrow tH^-$ Large K factors -reduced scale dependence
- Associated production with a W
- Charged Higgs pair production