Charged Higgs search @ CDF

Geumbong Yu

University of Rochester

On behalf of the CDF collaboration ROCHESTER

cH[±]arged 2008 @ Uppsala, Sweden September 16-19

Outline

Introduction

- Search Strategy
 - Previous charged Higgs search
 - $H^+ \rightarrow c\bar{s}$ in decays of top
- Fermilab, Tevatron, and CDF II detector
- ▶ t→bH⁺(→cs) Analysis
 - Event Selection & Reconstruction
 - Study on the H⁺ mass
 - Extracting $br(t \rightarrow H^+b)$
 - Systematic Uncertainty
- Result from 2.2 fb⁻¹
- Summary

Introduction

Search strategy

Previous charged Higgs search $H^+ \rightarrow c\bar{s}$ in decays of top Fermilab, Tevatron, and CDF II detector

Prog.Part.Nucl.Phys.50:63-152,2003

Direct production cross-section [dd] $\sqrt{s} = 2 \text{ TeV}$ •~ fb level. CTEQL •~1/1000 of top pair production (X-H 10-1 2 102 10 $\tan \beta = 50$ $\sqrt{s} = 2 \text{ TeV}$ 10-2 $\overline{q}q \rightarrow H^+H^-$ (-+ X) (fb) 101 $\overline{b} b \rightarrow H^{\pm} W^{\mp} (----)$ σ(pp̄ 10^{-3} ŧΗ 100 10 Ť $\tan \theta = 30$ $\sigma(\overline{p} p$ 100 200 10-1 $m_{\rm H}-$ (GeV) $\tan\beta = 6$ 10^{-2} Indirect production associated with top 125 225 250 100 150 175 200 m_{H[±]} (GeV) •Light Higgs: M(H⁺)<M(t) •Heavy Higgs: M(H⁺)>M(t)

16 September

300

Production of charged Higgs @ Tevatron

Prog.Part.Nucl.Phys.50:63-152,2003

 Direct production cross-section [dd] $\sqrt{s} = 2 \text{ TeV}$ •~ fb level. CTEQL •~1/1000 of top pair production (X-H 10-1 102 10 $\tan \beta = 50$ $\sqrt{s} = 2 \text{ TeV}$ 10-2 $\overline{q}q \rightarrow H^+H^-$ (-+ X) (fb) 101 $\overline{b}b \rightarrow H^{\pm}W^{\mp}(-----)$ σ(pp̄ 10^{-3} ŧΗ 100 10^{-4} Ť $\tan \beta = 30$ $\sigma(\overline{p} p$ 100 200 10-1 $m_{\rm H}^{-}$ '(GeV) $\tan\beta = 6$ 10^{-2} Indirect production associated with top 225 250 100 125 150 175 200 m_{H[±]} (GeV) •Light Higgs: M(H⁺)<M(t) •Heavy Higgs: M(H⁺)>M(t)

16 September

IIIII

300

Charged Higgs in top decays

- Charged Higgs viable in high and low tan β
- For tan $\beta > 7$,
 - $H^{-} \rightarrow \tau \nu$ dominant
 - Difficult to identify τ
- In low tan $\beta \sim 1$,

16 September

1)(1)

- $H^+ \rightarrow cs$ dominant for Higgs mass ≤130 GeV
- can be fully reconstructed

Branching ratio 9.889 9.89 H[±] decays to τv cs t*b W⁺h⁰ W⁺A⁰ 0.4 BR(t→ H⁺b) 0.2 10 1 tan(B)

> Made by R. Eusebi using CPsuperH together with $br(t \rightarrow H^+b)$ calculation

Introduction

Search strategy Previous charged Higgs search H⁺→cs in decays of top Fermilab, Tevatron, and CDF II detector

Previous charged Higgs search in top

R. Eusebi *et. al.*, Phys. Rev. Lett. 96, 042003 (2006)

- Look at the relative rates of events between different tt decay channel using cross-section measurements.
 - Consider 5 different final state of top quark:
 - t→bW⁺, bH⁺(→cs̄, τν, h^o(→bb̄)W+, t*b)
 - Get br(t→H+b) limits comparing the cross-section of top in each category:
 - Lepton+jets, Lepton+hadronic τ, Dilepton
- Do the same search assuming br(H⁺ \rightarrow τv) = 100%
 - : tauonic Higgs model
 - \circ Good approximation at large tan β
- Scan over all Higgs branching ratio combinations and take worst limits of br(t→H⁺b) as a upper limits.

Result 1 : MSSM parameter plane

16 September

Result 2 : Tauonic model

Br(t→H+b) <0.4 @ 95% C.L. for 80 GeV < m(H⁺) < 160 GeV

Result 3 : Higgs BR independent upper limits

Br(t→H+b) <0.83 @ 95% C.L. for 80 GeV < m(H⁺) < 160 GeV

ROCHESTER

H⁺ search in cs from top decays

- Charged Higgs viable in high and low tan β
- For tan $\beta > 7$,
 - $H^{-} \rightarrow \tau \overline{\nu}$ dominant
 - Difficult to identify τ
- In low tan β~1,

16 September

11

- H⁺ → cs⁻ dominant for Higgs mass ≤130 GeV
- can be fully reconstructed

 $M_{H^*}=120 \text{ GeV}$

Made by R. Eusebi using CPsuperH together with $br(t \rightarrow H^+b)$ calculation

Introduction

Search strategy Previous charged Higgs search H⁺→cs in decays of top Fermilab, Tevatron, and CDF II detector

tt lepton+jets channel

- Top quark is mainly produced in pairs from proton-antiproton collision.
- Top analysis is categorized by W boson sub-decays.
 - W⁺W⁻ → I⁺I⁻νν (~5%)
 - W⁺W⁻ → Ivjj (~29%)
 - W⁺W⁻ → jjjjj (~ 46%)

16 September

 In lepton+jets channel, the charged Higgs(H⁺ → cs) can be reconstructed by di-jet.

Charged Higgs in top decays

- Top quark is mainly produced in pairs from proton-antiproton collision.
- Top analysis is categorized by W boson sub-decays.
 - W⁺W⁻ → I⁺I⁻νν (~5%)
 - W⁺W⁻ → Ivjj (~29%)
 - W⁺W⁻ → jjjjj (~ 46%)

11) (1

16 September

 In lepton+jets channel, the charged Higgs(H⁺ → cs) can be reconstructed by di-jet.

Introduction

Search strategy Previous charged Higgs search H⁺→cs in decays of top Fermilab, Tevatron, and CDF II detector

Geumbong Yu

Fermilab

••

COCHESTER

16 September

Located 30 miles west from Chicago

Tevatron

- World's most powerful collider for 25 years
- Provides $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$
- Two colliding points,
 - CDF & DZero

16 September

11

Tevatron

- World's most powerful collider for 25 years
- Provides $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$
- Two colliding points,
 - CDF & DZero

16 September

Integrated Luminosity

Integrated Luminosity

Collider Detector at Fermilab

$t \rightarrow bH^{+}(\rightarrow cs)$ Analysis

Event Selection & Reconstruction Study on the H⁺ mass Extracting br(t→H⁺b) Systematic Uncertainties

tt Event Selection

tt Event Selection

tt Event Selection

Top Event Reconstruction

- Matching final state objects to the partons in kinematic χ^2 fitter:
 - Leading 4 jets (b-jets to b-parton)
 - Lepton

COCHESTER

16 September

- Un-clustered energy for missing Et calculation
- Constrain top and leptonic W mass
- Vary energies within 1σ in the fitter

Top Event Reconstruction

- Matching final state objects to the partons in kinematic χ^2 fitter:
 - Leading 4 jets (b-jets to b-parton)
 - Lepton
 - Un-clustered energy for missing Et calculation
- Constrain top and leptonic W mass
- Vary energies within 1σ in the fitter

$$\chi^{2} = \sum_{i=l,4 \text{ jets}} \frac{(p_{T}^{i,\text{fit}} - p_{T}^{i,\text{meas}})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{T}^{UE,\text{fit}} - p_{T}^{UE,\text{meas}})^{2}}{\sigma_{j}^{2}} + \frac{(m_{bij} - m_{t})^{2}}{\Gamma_{t}^{2}} + \frac{(m_{blv} - m_{t})^{2}}$$

Top Event Reconstruction

- Matching final state objects to the partons in kinematic χ^2 fitter:
 - Leading 4 jets (b-jets to b-parton)
 - Lepton

- Un-clustered energy for missing Et calculation
- Constrain top and leptonic W mass
- Vary energies within 1σ in the fitter

$t \rightarrow bH^{+}(\rightarrow cs)$ Analysis

Event Selection & Reconstruction Study on the H⁺ mass Extracting br(t→H⁺b) Systematic Uncertainties

Di-jet Mass vs. Number of Jets

In 120 GeV Higgs Monte Carlo

16 September

Good Higgs combination Others bad combination

- Worse Higgs di-jet mass resolution with extra jets in tt
- Energy loss by final state radiation from the Higgs particle

ΛR

Improvement on Di-jet Mass

- Merge most energetic extra jet to the closest leading jet if ΔR<1.0
 - Jet cone size : 0.4
 - 5th jet = the most energetic extra jet
- Mean of histogram close to the true mass
 - 103.3±21.8 GeV → 105.7±20.8 GeV
- Among 5th jets added to the Higgs, about ³/₄ are turned out a real FSR from Higgs.
- No effect on W⁺ and non-tt backgrounds

Reconstruct di-jet mass after merging nearby 5th jet

$t \rightarrow bH^{+}(\rightarrow c\bar{s})$ Analysis

Event Selection & Reconstruction Study on the H⁺ mass Extracting br(t→H⁺b) Systematic Uncertainties

Extracting br(t \rightarrow H⁺b)

- The binned likelihood function is constructed using:
 - Poisson probability
 - Gaussian constraints on number of non-tt background
- Di-jet mass distribution is fitted with the template :
 - H⁺,W⁺, and non-tt shape
- Likelihood fitter returns

16 September

1

- $br(t \rightarrow H^+b)$ assuming $br(H^+ \rightarrow CS) = 100\%$, $br(t \rightarrow H+b) + br(t \rightarrow W+b) = 1$
- Number of non-tt background
- Templates for Higgs mass of

90 GeV, 100 GeV, ..., 150 GeV

$$LH = \prod \frac{\nu_i^{n_i} \times e^{-\nu_i}}{n_i!} \bigotimes G(N_{bkg}, \sigma_{bkg})$$

$t \rightarrow bH^{+}(\rightarrow c\bar{s})$ Analysis

Event Selection & Reconstruction Study on the H⁺ mass Extracting br(t→H⁺b) Systematic Uncertainties

COCHESTER

Systematic Uncertainty

- Check systematic that can affect mass distribution
- Jet Energy Scale
 - Jet energy is corrected after reconstructing energy from calorimeter
 - Absolute, out of cone, detector response, multiple interactions, etc.
 - Change the overall correction scale $\pm 1\sigma$
- Monte Carlo generator
 - W⁺ distribution from Pythia vs. Herwig
- Initial/Final state radiation
 - Generate Monte Carlo with more/less radiation jets tuning in Pythia
- Q² scale on W+jets background
 - Generate W+jets background with different momentum transfer

Systematic Uncertainties

16 September

- Take output br(t \rightarrow H⁺b) shifts due to 1 σ systematic changes.
- Square-root-sum of each uncertainty is symmetrized and used to Gaussian smearing of the likelihood shape.

M(H⁺)	JES	MC-gen	ISR	FSR	Q ² , W+jets
90 GeV	0.063	0.047	0.015	0.003	0.008
100 GeV	0.026	0.021	0.013	0.003	0.003
110 GeV	0.011	0.020	0.011	0.003	0.003
120 GeV	0.010	0.021	0.009	0.003	0.002
130 GeV	0.005	0.018	0.007	0.003	0.001
140 GeV	0.003	0.014	0.005	0.004	0.001
150 GeV	0.002	0.020	0.003	0.004	0.002

Systematic Uncertainties

- Take output br(t \rightarrow H⁺b) shifts due to 1 σ systematic changes.
- Square-root-sum of each uncertainty is symmetrized and used to Gaussian smearing of the likelihood shape.

Upper Limit on Br(t \rightarrow H⁺b)

16 September

40

SM Expected Limit on Br(t \rightarrow H⁺b)

Results

from 2.2 fb⁻¹

Di-jet Mass in 2.2 fb⁻¹ Top Decays

Upper Limit Br(t \rightarrow H⁺b) @ 95% C.L.

Br(t→H+b) < 0.1~0.3 for 90 GeV < M(H+) < 150 GeV

16 September

ROCHESTER

Summary

Summary

- Charged Higgs search in decays of top in 2.2 fb⁻¹ of CDF Run II data
 - Fully reconstructed di-jet invariant mass for $H^+ \rightarrow cs^-$
 - $\circ~$ Viable at small tan β in the MSSM parameter
 - Improved result on the br(t \rightarrow H⁺b) upper limits
 - In 2.2 fb⁻¹: br(t→H⁺(c⁻s)b) < 0.1~0.3 for 90GeV < M(H⁺) < 150 GeV
 - In 192 pb⁻¹: br(t→H⁺(τ⁺ν)b) < 0.4 for 80 GeV < M(H⁺) < 160 GeV
 - Can be Interpreted as an independent search of top quark property
 - br(t→W⁺b)>0.7~0.9 for 90 GeV <M(H⁺)<150 GeV
- New era of charged HIGGS coming soon @ LHC?!

Thank you Tack så mycket

Previous Charged Higgs searches @ CDF

- Search for Charged Higgs Bosons from Top Quark Decays in p anti-p Collisions at s**(1/2)= 1.96 TeV
 - Phys. Rev. Lett. 96, 042003 (2006)
- Search for the Charged Higgs Boson in the Decays of Top Quar k Pairs in the e tau and mu tau Channels at s**(1/2) = 1.8 TeV
 - Phys. Rev. D62, 012004 (2000)
- Search for Charged Higgs Boson Decays of the Top Quark usin g Hadronic Decays of the Tau Lepton
 - Phys. Rev. Lett. 79, 357 (1999)
- Search for Charged Higgs Boson Decays of the Top Quark Usin g Hadronic Tau Decays
 - Phys. Rev. D54, 735 (1996).
- Search for the Top Quark Decaying to a Charged Higgs Boson i n p anti-p Collisions at s**(1/2)=1.8 TeV
 - Phys. Rev. Lett. **72**, 1977 (1994)

Non-ttbar background composition

Background shape [CDF RunII 2.2 fb⁻¹]

ROCHESTER

16 September

