Prospects for Charged Higgs Discovery at Colliders Uppsala, 16-19 September 2008

Charged Higgs Prospects with CMS

R. Kinnunen Helsinki Institute of Physics

Prospects of Cherged Higgs Discovery at Colliders, Uppsala, 13-16 September 2006

Introduction

Studies for H⁺ discovery reach in MSSM were complished during 2006 -The $m_h(max)$ scenario with μ =200 GeV/c² was used -Main results based on full simulation studies will be shown in the following

Studies are in progress for analysis methods and data driven background measurements

-Some preliminary results are discussed

Contents:

- Searches for the light charged Higgs bosons with the $H^{\pm} \rightarrow \tau v$ decay channel in the tt events
- Searches for the heavy charged Higgs bosons:

with the $H^{\pm} \rightarrow \tau v$ decay channel

- with the $\mathbf{H}^{\pm} \rightarrow \mathbf{tb}$ decay channel
- Recent studies for methods and background measurements

Search for light charged Higgs boson

Search strategy is based on looking for excess of events over SM expectation :

$$\sigma = \frac{N_{obs}^{MSSM} - N_{B}^{SM}}{N_{B}^{SM}}$$

Signal process **gg** -> **tt** -> **W**[±]**H**[±]**bb**->*t***vtvbb**, $l = e \text{ or } \mu$, including off-shell contributions near $m_{H^+} = m_{top}$ with the process **gb**->**tH**[±] Signal generation with PYTHIA, τ decays with TAUOLA

Backgrounds: pp ->tt->W⁺W⁻bb, W⁺->τ⁺v, W⁻→ 𝔅, pp ->tt->W⁺W⁻bb, W⁺->jj, W⁻→ 𝔅 pp ->tt->W⁺W⁻bb, W⁺->𝔅, W⁻→𝔅 v, W+3 jet production
Event generation:
tt background (with τ+lepton, jet+lepton and lepton+lepton) with **PYTHIA**W+3jets, W→𝔅 and Zbb, Z→𝔅 with **MadGraph**Wt, W₁→𝔅, W₂→τv or qq, tq+tb, t->Wb→𝔅b, Wbb, W→𝔅, with **TopRex**

Prospects of Cherged Higgs Discovery at Colliders, Uppsala,16-19 September 2008

Event selection and τ -jet identification

Event selection

- one lepton passing the Level-1 and HLT triggers
- at least 3 jets with E_T > 40 GeV
- exactly one b jet
- one identified τ jet, $E_T > 40$ GeV
- $Q_{\ell} \times Q_{\tau} = -1$
- Missing $E_T > 70 \text{ GeV}$

Identification of the τ jet:

- Tracker isolation with signal cone = 0.07, isolation cone = 0.4, $p_T > 1$ GeV for tracks
- ECAL isolation: ΣE_T^{cell} (0.13< ΔR <0.4) < 5.6 GeV
- Electron supression: E_T(HCAL cell in the jet) > 2 GeV
- $p^{\text{leading track}} / E^{\tau} > 0.8$, to exploit the opposite τ helicity correlations in the H[±] -> τv

and W[±] -> τv decays, leading to harder pions from H[±] -> τv

Efficiencies:

signal 11-15%, tt->WWbb -> $bb\tau^+v$ δ 5%, W+3jets 1%, tt->WWbb -> $bb\ell'v'$ δ 2%

Data driven medhod for the measurement of W+jet background

Event selection to obtain a sample in a signal-free "area" :

- one lepton (Level-1 and HLT)
- 3 non-b jets
- no τ jets
- including pixel isolation for an electron to avoid QCD background
- substraction of the tt contribution
- propagation to "signal area" through:

$$N_{S}^{W+3\,jets} = \in_{W+3\,jets}^{S} \frac{N_{B}^{obs.} - N_{B}^{ti}}{\in_{W+3\,jets}^{B}}$$

where $N^B_{\ tt}$ is the tt contamination, $\ \epsilon^S$ and ϵ^B efficiencies for signal and background selections

Systematic uncertainty can be estimated as

$$\Delta_{sys.}^{W+3j} = \Delta_{stat.} \oplus \frac{\Delta N_B^{tt}}{N_B^{W+3j}} \oplus \Delta_{3non-b-jet} \oplus \Delta_{1b-jet\ mistag} \oplus \Delta_{1tau\ mistag}$$

Prospects of Cherged Higgs Discovery at Colliders, Uppsala,16-19 September 2008

Expected H[±] discovery reach for gg -> tt -> W[±]H[±]bb->*l*vtvt

in m_h^{max} scenario with μ = 200 GeV

Systematic uncertanties from jet energy scale (3%), missing E_T scale (10%), b tagging (5%), τ tagging(4%), lepton identificatio (2%), b mis-tagging (5%), τ -mis-tagging (5%), luminosity (3%) estimates for 30 fb⁻¹ tt cross section (5.6%)

Systematic uncertainties added quadratically to the statistical uncertainty

Published results based on CMS full simulation

Event genaration with the $gg \rightarrow tbH^{\pm}$ process

- allows predictions close to the tt threshold

Signal generation with PYTHIA, Normalization to the NLO cross sections

Background generation:

- tt with PYTHIA
- Wtb with Toprex
- W+3jets with Madgraph
- QCD multi-jet with PYTHIA

 τ decays with TAUOLA in signal and backgrounds

Event selection for published results

Trigger: Level-1: τjet , $E_T > 93 \text{ GeV}$, HLT: Missing $E_T > 67 \text{ GeV}$,

 $p_T > 25$ GeV for the leading track, isolation in a cone around the leading track Offline analysis:

- Veto on isolated leptons from W->k to ensure missing E_T from H[±] -> τ v
- Identification of one hadronic τ jet
 - cone algorithm, track and ECAL isolation, helicity cut: $p^{\text{leading track}}/E^{\text{t jet}} > 0.8$
 - signal efficiency 4-9%, hadronic jet rejection ~ 10^4
- Missing E_T > 100 GeV
- W and top mass reconstruction, b tagging
- veto on addional central jets with E_T > 25 GeV
- transverse mass reconstruction from the τ jet and Missing E_T

Transverse mass distributions for the signal and background with all selection cuts

Discovery potential

SUSY corrections not taken into account in the production

Prospects of Cherged Higgs Discovery at Colliders, Uppsala,16-19 September 2008

M. Hashemi, S. Heinemeyer, R. Kinnunen, A. Nikitenko and G. Weiglein, DCPT-08-38, IPPP-08-19, Apr 2008

Figure 3: Discovery reach for the charged Higgs boson of CMS with 30 fb⁻¹ in the M_{A-} tan β plane for the m_h^{max} scenario for $\mu = \pm 200, \pm 1000$ GeV in comparison with the results from the CMS PTDR (thickened dotted (red and blue) lines), obtained for $\mu = \pm 200$ GeV and neglecting the Δ_b effects.

Prospects of Cherged Higgs Discovery at Colliders, Uppsala,16-19 September 2008

- final state: bbbqq'lv
 - isolated lepton to trigger on
 - charged Higgs mass can be reconstructed
 - only final state with muon investigated

Search strategies for $\,H^{\!\pm}\!\rightarrow\!tb$

- resolving 3 b-jets: inclusive mode
 - \rightarrow LO production through $~gb \rightarrow tH^{\pm}$
 - \rightarrow large background from $\dagger \overline{\dagger} + jets$
 - \rightarrow high combinatorics
- resolving 4 b-jets: exclusive mode
 - \rightarrow LO production through $gg \rightarrow tH^{\pm}b$
 - \rightarrow smaller background (from $t \bar{t} b \bar{b}$ and $t \bar{t} j j + 2$ mistags)
 - → even higher combinatorics

Event generation and selections

Signal generation with **PYTHIA**, **gb** -> **tH**[±] for 3b selection and **gg** -> **tbH**[±] for 4b selection Background generation: ttjj with **MadGraph/MadEvent** for 3b selection ttbb and ttjj with **CompHEP** for 4b selection

Event selection and background suppression:

- one isolated lepton
- at least 5 (6) jets for the 3(4)b selection with $E_T > 25 \text{ GeV}$
- at least 3 (4) b-tagged jets for the 3(4)b selection with $E_T > 25 \text{ GeV}$
- Kinematic fit for H⁺ mass reconstruction
- Combined Likelihood ratio method for
 - selecting best possible jet association
 - suppression of backgrounds

with several varibles (p_t^{bjet} , η^{bjet} , b-discriminator, χ^2 probability of the kinematic fit..)

100

90

80

70

60

50

40

30

20

10E

0

3 b-tag channel

Prospects of Cherged Higgs Discovery at Colliders, Uppsala, 16-19 September 2008

m_A (GeV/c²)

R. Kinnunen Helsinki Institute of Physics

Ongoing study on selection methods and background measurements

New features in background generation

- Generation of tt and W+3/4jet backgrounds with **ALPGEN+TAUOLA**
- tt with with tt+0jet (74%) and tt+1jet (21%) production
- W+3/4 jet generation in 2 W-mass bins, 0-150 GeV, 150-500 GeV to obtain good statistics in the important large mass tail (courtesy of M. Mangano)

Prospects of Cherged Higgs Discovery at Colliders, Uppsala, 16-19 September 2008

New features: lowered E_{T} thresholds, ECAL isolation, tracker selection on two levels

- Level 1: Single tau, $E_T > 80 \text{ GeV}$
- Level 2: Missing $E_T > 65$ GeV, ECAL isolation of tau candidates
 - Sum of ECAL transverse deposits in 0.13< ΔR < 0.4 smaller than 5 GeV
- **Level 3**: As for Level2.5 but with wider reconstruction region in $\eta \phi$: 0.5x0.5 and isolation tracks $p_T > 1$ GeV

- 1. Selection of hadronic events to ensure missing $E_{_T}$ from $H^{\scriptscriptstyle\pm}$ -> $\tau\nu$:
 - Veto on isolated electrons with $p_T > 8 \text{ GeV/c}$
 - Veto on all reconstructed muons with p_T > 4 GeV/c
- **2. Identification of one energetic hadronic** τ jet, $E_T > 100 \text{ GeV}$,
- **New** \rightarrow devided to 1- and 3-prong selections
 - Kinematic cuts, isolation and other τ identification cuts
 - τ helicity-correlation cuts
- **New** \rightarrow **Veto on additional** τ **jets** (from the associted top)
 - Identification of soft τ jets
 - 4. Missing $E_T > 100 \text{ GeV}$
 - 5. **B tagging**
 - 6. W and top mass reconstruction
 - 7. transverse mass reconstruction from the τ jet and Missing $E_{\rm T}$

$New \rightarrow No$ veto on addional central jets

Goal is to obtain:

~10⁵ supression for hadronic jets to keep under control the QCD multi-jet backgroud (further suppression mainly from Missing E_T cut)

~100-1000 suppression of genuine τ jets from the tt and W+3/4jet backgrounds

~10% signal efficiencies for 1-prong τ jets

Identification based on calorimeter τ jets

- Some improvements can be expected from **Particle Flow method** or **a method correcting** τ -jet with tracks: replace the calorimeter τ jet with tracks whenever possible, correcting for π^{0} 's

for good geometrical ECAL-HCAL-track matching :

- 1. If $|E_T^{HCAL+ECAL} p_T^{track}| < 2 \sigma_{CALO}$: use $\tau \sim track p$, corresponds to $\tau \rightarrow \pi^{\pm} + \nu$
- 2. If $E_T^{HCAL+ECAL} p_T^{track} > 2 \sigma_{CALO}$ 2.1 if $|E_T^{HCAL} - p_T^{track}| < 2 \sigma_{HCAL}$: use $\tau \sim track p + ECAL cluster$, corresponds to $\tau \rightarrow \pi^{\pm} + n\pi^0 + v$ with charged pion not interacting in ECAL 2.2 if $p_T^{track} - E_T^{HCAL} > 2 \sigma_{HCAL}$, π^{\pm} interaction in ECAL, take the calo jet 2.3 if $E_T^{HCAL} - p_T^{track} > 2 \sigma_{HCAL}$, hadronic jet, reject

3. If $E_T^{HCAL+ECAL} - p_T^{track} < 2 \sigma_{CALO}$: track reconstruction problem, **reject**

Optimization was performed for:

- the cones for energy collection in ECAL and HCAL
- -the regions for the categories

Performance of the method: Resolution and efficiency for τ jets with E_T >100 GeV very similar to the one obtained from the PF method

New τ selection

- Kinematical selections
 - $E_T^{jet} > 100$ GeV, smaller η range, $|\eta^{jet}| < 2.0$, helps to reduce QCD and W+3/4jet backgrounds
- Tight isolation with charged tracks
 - consider good tracks with p_T > 0.5 GeV, significant improvement of isolation power against QCD
 - signal cone 0.04, isolation cone 0.45
- Electromagnetic isolation, rejection of neutral hadrons and electrons with track/HCAL matching

One-prong selection

• Track quality cuts for leading track, Helicity correlation cut

Three-prong selection

- Selection of $\tau \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\pm}$ decay modes (~10% of τ decays)
- Helicity correlation cut for 3-prongs
- Invariant mass cut, efficient due to charged content of the τ jet
- Cut on flight path significance

•Helicity correlations: fraction of visible energy is larger for τ jets coming from H[±] decay than for τ jets coming from W decay in tt and W+3/4jet events

 R_{τ} for 1-prong final state with kinematical cuts

Prospects of Cherged Higgs Discovery at Colliders, Uppsala,16-19 September 2008

Features of the 3-prong selection

Select the $\tau \rightarrow a_1^{\pm} v$, $a_1^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} decay modes only$ (2/3 of all $\tau \rightarrow 3\pi^{\pm}v + X$ decays) to suppress the hadronic QCD jets Selection with calorimeter/track matching variable: $|\Sigma p^{\text{tracks}} / E^{\text{jet}} - 1| < 0.3$

Helicity correlation cut: $p(\pi \pm \pi \pm) / E^{\tau - jet} > 0.75$, selects a_{1L} decays where charged pions carry very little or most of the τ jet energy

M. Guchait, R. Kinnunen, D.P. Roy, hep-ph/0608324, $p(\pi \pm \pi \pm) / E^{\tau - jet} > 0.8$ or $p(\pi \pm \pi \pm) / E^{\tau - jet} < 0.3$ was proposed, but QCD background too large for $p(\pi \pm \pi \pm) / E^{\tau - jet} < 0.3$

Published results: Simple fit with $\chi^2 = ((m_{jj} - m_w)/\sigma_w)^2 + ((m_{jjj} - m_{top})/\sigma_{top})^2$

- One jet in m_{jjj} the best tagged b jet - σ_w and σ_{top} from a fit with MC matching

Prospects of Cherged Higgs Discovery at Colliders, Uppsala,16-19 September 2008

Kinematic fit:

Minimization of $\chi^2 = ((m_{jj} - m_W)/\sigma_w)^2 + ((m_{jj} - m_{top})/\sigma_{top})^2 + \Sigma((E_i^m - E_j)/\sigma_j)^2$

with respect to jet energies E_i , one jet (p_3) b tagged with the constraints, $m_{ii}^2 - (p_1 + p_2)^2 = 0$, $m_{iii}^2 - (p_1 + p_2 + p_3)^2 = 0$

- b jet chosen as the one with maximum b-discriminator value, $E_{T} > 30$ GeV - Minimization was done using Lagrange Multipliers and Partitioned Matrix Method.

- $-\sigma_i$ are the estimated jet uncertainties in the CMS detector
- $\chi^2 < 9.2$ required
- Large improvement in the W and top mass resolutions

- W and top peaks appear in the (W+jets, QCD) backgrounds also, but improvement of S/B ratios is obtained with mass window cuts

Data driven method to measure the tt and W+3/4jet backgrounds due to missing E_T mis-measurement -Exploits the precise muon momentum measurement in W-> $\mu\nu$ decays

Data sample used: muonic multi-jet events

Preliminary study was performed with

- separating the tt and W+jet components with b jets and W/top mass
- propagating the result to "signal-selection" scaling with efficiencies in signal selection and in muon selection
- drawback: complicated estimation of systematic uncertainties

Plan for optimized study

- replacing the muon with τ with the same energy and decaying the τ with correct polarization state
- running the standard signal selection
- no separation of tt and and W+jet backgrounds

Event selection used in the preliminary study

Off-line selection cuts for events from single muon trigger:

- One isolated muon with $p_T^{\mu} > 100 \text{ GeV}$
- Lepton veto, τ-jet veto
- $E_T^{miss} > 100 \text{ GeV}$
- $3 \text{ jets}, E_T > 20 \text{ GeV}$

tt selection:

- **2 b jets**, suppression of W+jets
- W and top reconstruction, suppression of W+jets and recidual τ jets
- $m_T(\mu, E_T^{miss})$ reconstruction

W+3/4jet selection:

- **no b jets**, suppression of tt
- top and W mass veto, suppression of tt, **no τ-jet suppression**
- $m_T(\mu, E_T^{miss})$ reconstruction

Propagation of the selected tt events to "signal selection" with

 $N_{\text{signal-sel}}^{\text{tt}} = (N_{\text{ttsel}}^{\text{tt}} - N_{\text{ttsel}}^{W3/4j}) * (\epsilon^{\tau}/\epsilon^{\mu})$, subtracting the W+3/4jet contamination

Further drawback observed: difficult to suppress the tt contamination for the W+3/4jet selection

Importance of hadronic purity

Result learned from the preliminary background study with muons

W-> τ v->hadrons+vv decays from the associated top were found as an important background source in tt events -Addional neutrinos alter the direction and magnitude of E_T^{miss} and the background event can fall to the signal area, large $m_T(\tau \text{ jet}, E_T^{miss})$

Prospects of Cherged Higgs Discovery at Colliders, Uppsala,16-19 September 2008

Method to measure the background with hadronic multi-jet data

Event selection:

- tau + MET trigger
- At least one jet with $p_T^{jet} > 100 \text{ GeV}$
- One of the jets with $p_T^{jet} > 100$ GeV taken randomly as τ candidate
- 3 jets, $E_T > 20 \text{ GeV}$
- one "b" jet
- top and W mass reconstruction
- $E_T^{miss} > 100 \text{ GeV}$
- $m_T(\tau \text{ candidate,MET})$ reconstruction

Events in the "signal area" can be obtained with the normalization: $N^{QCD}(\tau-sel) = N^{QCD}(QCD-sel) * \epsilon(\tau-miss-id)$

 $\epsilon(\tau-miss-id)$ can be measured from $\gamma+jet$ events or from QCD di-jet events

Fake τ probability from γ +jet events

Expected rate for isolated photons and QCD background

QCD background suppression has been done with isolation and cluster shape cuts for photons Photon-jet balance cut also applied

Good S/B can be achieved at large p_T

Luminosities of ~10 fb⁻¹ may be needed for a precisions better than ~30% for jets with $E_T > 100$ GeV, assuming a hadronic jet rejection of ~10⁵

Other possibility: use the **QCD di-jet events from pre-scaled jet triggers** Advantage: ~1000 times larger rate and gluonic jets

Conclusions

The $H^{\pm} \rightarrow \tau v$ decay channel in the tt production and in the associated gg \rightarrow tb H^{\pm} production are the discovery channels for H^{+} with large parameter space reach, results from with full simulation and reconstruction of the CMS detector response

Large sensitivity was observed to μ parameter with a more recent study

Recent studies concentrate on analysis methods and background measurements

- Significantly more efficient τ identification method has been developped and was discussed
- Data driven background methods were discussed:
 - Preliminary method to measure the tt and W+3/4jet with muonic multi-jet events: τ jets from the associated top in tt events are a significant background source
 - Method to measure the QCD multi-jet background with the hadronic multi-jet events, determining the the fake rate probability with the γ +jet events or QCD di-jet events

Back-up slides

Prospects of Cherged Higgs Discovery at Colliders, Uppsala, 16-19 September 2008

Helicity correlations

Illustration with simple spin arguments for $\tau^+ \rightarrow \pi^+ v$ form H⁺ -> $\tau^+ v$ and W⁺ -> $\tau^+ v$:

