

Charged 2008 Uppsala, Sep 16, 2008

H⁺ searches with ATLAS

- $\mathbf{m}_{H^+} < \mathbf{m}_{top}$: ttbar \rightarrow bW bH⁺
 - Hadronic τ + jets: $H^+ \rightarrow \tau (\rightarrow had) \nu \qquad W \rightarrow qq'$
 - Hadronic τ + lepton: $H^+ \rightarrow \tau (\rightarrow had) \nu \qquad W \rightarrow l \nu$
 - Leptonic τ : $H^+ \rightarrow \tau(\rightarrow lep)v$ $W \rightarrow qq'$
 - Hadronic H⁺: $H^+ \rightarrow cs$ $W \rightarrow lv$
- $\mathbf{m}_{H^+} > \mathbf{m}_{top}$: $gg/gb \rightarrow t[b]H^+$
 - **tb mode**: $H^+ \rightarrow tb$ one $W \rightarrow qq'$, the other $W \rightarrow l\nu$
 - $\tau \nu$ mode: $H^+ \rightarrow \tau (\rightarrow had) \nu \qquad W \rightarrow qq'$
- H⁺ production in or decay to **SUSY cascades** (e.g. H⁺ $\rightarrow \chi^+ \chi^0$)
- H⁺ production with or decay to **bosons** (e.g. H⁺ \rightarrow Wh; qq' \rightarrow H⁺A)
- Indirect searches: ttbar and single top cross section measurements
- **Parameter Determination**: m_{H+} , tan β

H⁺ searches with ATLAS

- $\mathbf{m}_{H^+} < \mathbf{m}_{top}$: ttbar \rightarrow bW bH⁺
 - Hadronic τ + jets: $H^+ \rightarrow \tau (\rightarrow had) \nu \qquad W \rightarrow qq'$
 - Hadronic τ + lepton: $H^+ \rightarrow \tau (\rightarrow had) \nu \qquad W \rightarrow l \nu$
 - Leptonic τ : $H^+ \rightarrow \tau(\rightarrow lep)v$ $W \rightarrow qq'$
 - Hadronic H⁺: $H^+ \rightarrow cs$ $W \rightarrow lv$
- $\mathbf{m}_{H^+} > \mathbf{m}_{top}$: $gg/gb \rightarrow t[b]H^+$
 - **tb mode:** $H^+ \rightarrow tb$ one $W \rightarrow qq'$, the other $W \rightarrow lv$
 - $\tau \nu$ mode: $H^+ \rightarrow \tau (\rightarrow had) \nu \qquad W \rightarrow qq'$
- H⁺ production in or decay to **SUSY cascades** (e.g. H⁺ $\rightarrow \chi^+ \chi^0$)
- H⁺ production with or decay to **bosons** (e.g. H⁺ \rightarrow Wh; qq' \rightarrow H⁺A)
- Indirect searches: ttbar and single top cross section measurements
- **Parameter Determination:** m_{H+} , tan β

Martin Flechl

LIPPSALA

pdated

updated

Outline

1. Introduction

- 1. The ATLAS Experiment
- 2. Important tools in H⁺ searches
- 3. The ATLAS "CSC" efforts: H+ searches in a common framework
- **2.** $\mathbf{m}_{H^+} < \mathbf{m}_{top}$: ttbar \rightarrow bW bH⁺
 - 1. Hadronic τ + jets: $H^+ \rightarrow \tau (\rightarrow had) \nu \qquad W \rightarrow qq'$
 - 2. Hadronic τ + lepton: $H^+ \rightarrow \tau (\rightarrow had) \nu \qquad W \rightarrow l \nu$
 - 3. Leptonic τ : $H^+ \rightarrow \tau (\rightarrow lep) \nu \qquad W \rightarrow qq'$
- 3. $\mathbf{m}_{H^+} > \mathbf{m}_{top}$: gg/gb \rightarrow t[b]H⁺
 - 1. tb mode: $H^+ \rightarrow tb$ one $W \rightarrow qq'$, the other $W \rightarrow lv$
 - 2. τv mode: $H^+ \rightarrow \tau (\rightarrow had) v \qquad W \rightarrow qq'$
- 4. Systematic Uncertainties and Combined Results

1. Introduction

- 1.1 The ATLAS Experiment
- 1.2 Tools for H+ Searches
- 1.3 The ATLAS H+ "CSC Efforts"

2. H⁺ in Top Quark Decays 3. H⁺ in gg- & gb-fusion 4. Systematics & Results

ATLAS @ LHC

• LHC

- pp-collisions at 14 TeV, 25ns spacing
- reaching a new order of magnitude in energy and luminosity

• ATLAS

- general-purpose detector
- length: 46m; diameter: 25m; weight: 7000t
- to record 200 events (out of 20*40M) every second

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

The Tools

- Charged Higgs searches would be impossible without any of the following tools and the people involved
- Excellent coverage in the following days thus only pointers here:
 - Trigger:
 - Performance: Frank Winklmeier, Wednesday
 - For H⁺: Chris Potter, Tuesday
 - Tau Trigger: Richard Brenner, Wednesday
 - τ ID: Aldo F. Saavedra, Wednesday
 - **b-tagging**: Giacinto Piacquadio, Thursday
 - and many others (jet/missing energy; lepton ID; ...)

The H⁺ "CSC efforts"

- Start: June 2006; now at the end of the publication process
- For the first time: Simulation studies of all of the most promising H⁺ channels with
 - a realistic detector simulation
 - full consideration of all **trigger** levels
 - inclusion of dominating systematic uncertainties
 - in a common framework (simulation, reconstruction, analysis, tools, combination, ...)
- Aim: To get the machinery ready for first data
- More than 20 people from about a dozen of institutions directly involved

Parameters & Scenarios

- ATLAS H⁺ searches currently focus on the **MSSM** and on generic scenarios (**model-independent**)
- The figures in this talk are all for the MSSM scenario " m_h -max", unless marked otherwise: $M_2 = 200 \text{ GeV}$ $M_3 = 800 \text{ GeV}$ $\mu = 200 \text{ GeV}$ $X_T = 2 \text{ TeV}$ $M_{SUSY} = 1 \text{ TeV}$
- NLO calculations used throughout; important SUSY corrections (Δ_b) considered (FeynHiggs, Tilman's code)
 → see Andre Sopczak's talk
- All results: based on the H⁺ trigger menu (within the trigger bandwidth budget for ∠=10³³cm⁻²s⁻¹ = "low lumi" runs)
 → see Chris Potter's talk

1. Introduction

2.4

2. H⁺ in Top Quark Decays

- 2.1 Production and Decay
- 2.2 Hadronic τ +jets: $H^+ \rightarrow \tau (\rightarrow had)v$, $W \rightarrow qq'$
- 2.3 Hadronic τ +lepton: $H^+ \rightarrow \tau (\rightarrow had)v$, $W \rightarrow lv$
 - Leptonic τ : $H^+ \rightarrow \tau (\rightarrow lep)v$, $W \rightarrow qq'$

3. H⁺ in gg- & gb-fusion4. Systematics & Results

H⁺ in Top Quark Decays

- H⁺ lighter than the top quark
- Dominant production mode: ttbar decays, σ(ttbar)≈800pb
- BR(t→bH⁺) depends on
 m_{H⁺} & tan β (typical: a few per cent)
 [and your favourite scenario...]
- Decay: almost exclusively to τν;
 for tan β<2, cs becomes sizable

Main channels of interest: ttbar \rightarrow bH⁺ bW,

H ⁺ Decay	W Decay
$\tau v, \tau \rightarrow had$	qq
τν, τ→had	lv
τν, τ→lep	qq

Basic Event Selection

- **Trigger**: $\tau + E_T^{miss}$
 - → main challenge for this channel; only about 10% trigger efficiency
- Preselection:
 - 1 τ jet, 2 b jets, 2 light jets
 - $E_T^{miss} > 30 \text{ GeV}$
 - No isolated lepton
 - W and top reconstructed
 - 2 top quarks: p_T -ratio<2; angle in transverse plane>2.5

→enhances the ttbar topology (signal & background!); other backgrounds become negligible

Efficiency after basic	Signal	ttbar≥1 lepton	QCD
event selection:	0.4-0.5%	0.07%	< 0.000 01%

Further Event Selection

Cross-section [fb]

90

80

70

60

50

0,

• Likelihood

- suppress SM ttbar
- 7 variables

- Likelihood distribution for m_{H+}=130 GeV, tan β=20:
 signal & background, stacked
- m_{H+} < 140 GeV: Cut at LH>0.6; efficiency:

Signal	ttbar≥1 lepton
40-50%	15-20%

Martin Flechl

0.2

Charged Higgs Prospects with ATLAS, cHarged08

Event Selection

- **Trigger**: (lepton or τ)+ E_T^{miss}
- Selection Cuts:
 - isolated lepton
 - ≥3 jets→ ≥1 τ-tagged→ ≥1 b-tagged
 - $q_l + q_t = 0$
 - $E_{T}^{miss} > 175 \text{ GeV}$
- neutrinos from multiple sources =>
 no mass reconstruction possible for the H⁺ (nor for the W or top)

Results

Charged Higgs Prospects with ATLAS, cHarged08

Martin Flechl

UPPSALA UNIVERSITET

The Leptonic τ Mode

Basic Event Selection

Trigger: lepton + missing energy OR high missing energy

Preselection:

- 1 lepton
- High missing transverse energy: >120 GeV
- ≥ 4 jets ≥ 2 of them b-tagged

UPPSALA

After preselection, all backgrounds are negligible compared to ttbar \rightarrow selection efficiency:

	Signal	ttbar≥1 lepton
Trigger	40-55%	45%
Preselection	2-3%	1%

Further Event Selection **Reconstruct hadronic top quark:** - select dijet closest to W mass - assign the two b jets to the W and H^+ \rightarrow likelihood [b charge; angle (b,lepton) & (b,W)] - cut on m_{top} Cut on the **decay angle** $\cos \psi = \frac{2m_{\ell b}^2}{m_{top}^2 - m_{tw}^2} - 1 < -0.8$ Cut on $m(lepton, E_{T}^{miss}) < 60 \text{ GeV}$ \rightarrow suppress events with W \rightarrow lv. For those: ψ = angle (top, lepton) and m=m_T^W • Novel generalized transverse mass definition [see Ofer Vitell's talk] $(m_T^{H^+})^2 = (\sqrt{m_{top}^2 + (\vec{p}_T^{lep} + \vec{p}_T^b + \vec{p}_T^{miss})^2} - p_T^b)^2 - (\vec{p}_T^{miss} + \vec{p}_T^{lep})^2 \xrightarrow{20}$ $\rightarrow allows \ m_T(H^+) \ reconstruction$ 20 m_{H+} = 90 GeV 20 m_{H_} = 120 GeV т_{н+} = 150 GeV in the presence of 3 neutrinos 15 ATLAS ATLAS ATLAS ¹⁰ preliminary 10 preliminary preliminary **Further event** Signal ttbar≥1 lepton selection efficiency 20-30% 7% 50 150 200 100 150 150 100 m, [GeV] m_T [GeV] m_ [GeV]

Charged Higgs Prospects with ATLAS, cHarged08

Charged Higgs Prospects with ATLAS, cHarged08

Introduction H⁺ in Top Quark Decays

$3. H^+$ in gg- & gb-fusion

- 3.1 Production and Decay
- 3.2 tb mode
- 3.3 τv mode

4. Systematics & Results

H⁺ in gg- and gb-fusion

- For H⁺ heavier than top quark:
- Dominant production mode (MSSM): gg→tbH⁺, gb→tH⁺
 → twin processes; overlap can be handled with generator Matchig
- Decay: tb dominates, τν sizeable

Main channels of interest: $gg/gb \rightarrow bW [b]H^+$

H ⁺ Decay	W Decay
tb	lv & qq (2 Ws)
$\tau v, \tau \rightarrow had$	qq

Basic Event Selection

- **Trigger**: (τ or lepton)+ E_T^{miss}
- Preselection:
 - 1 isolated lepton
 - \geq 5 jets \geq 3 of them b-tagged
 - Leptonic W reconstructed
- Selection efficiency:

Signal	ttbar+jets	ttbar+bbar
2-9%	1%	6%

Further Event Selection

PDFs

- **Combinatorial likelihood**
 - based on 8 variables
 - best combination is kept
 - cut: LH>0.7
- Likelihood output:

Requirement of 4 b jets

	Signal	ttbar+jets	ttbar+bbar
LH	90%	84%	90%
4b	10-15%	4%	15%

Charged Higgs Prospects with ATLAS, cHarged08

Results

- Finally, a selection likelihood is defined
 - aim: suppress ttbar+jets
 - larger background samples are needed for a performing likelihood
- No H⁺ sensitivity on its own (MSSM!)... but:
 - Contributes to combined H⁺ sensitivity
 - Hope for improvement with a future selection likelihood

tan β =70

The H⁺ $\rightarrow \tau \nu$ Mode

Basic Event Selection

- **Trigger**: τ jet + missing energy
- Preselection:
 - $E_{T}^{miss} > 50 \text{ GeV}$
 - ≥ 4 jets, of which
 - 1 b-tagged
 - 1 τ-tagged
 - veto on isolated leptons
 - W & top reconstructed

 After preselection, all backgrounds are negligible compared to ttbar → selection efficiency:

Signal	ttbar≥1 lepton
1-2%	0.04%

Large performance difference depending on m_{H^+} Cut on **LH>0.9** (high m_{H^+} : 0.95)

Charged Higgs Prospects with ATLAS, cHarged08

Introduction
 H⁺ in Top Quark Decays
 H⁺ in gg- & gb-fusion

4. Systematics & Results

- 4.1 Dominating Systematic Uncertainties
- 4.2 ttbar control samples
- 4.3 Combined Results

Systematic Uncertainties

• Theoretical (σ, BR) : $\approx 20\%$

• Experimental: 30-40%, JES dominates

 Removes almost all H⁺ sensitivity

 → discovery
 potential depends
 on how well

 background can be extracted from data Table 11: Effects of systematic uncertainties for all channels under investigation. The numbers are given in terms of percentage changes in cross-section. The channels are: 1: $t\bar{t} \rightarrow bH^+bW \rightarrow b\tau(had)vbqq$ (see Section 3.1), 2: $t\bar{t} \rightarrow bH^+bW \rightarrow b\tau(lep)vbqq$ (see Section 3.2), 3: $t\bar{t} \rightarrow bH^+bW \rightarrow b\tau(had)vb\ell v$ (see Section 3.3), 4: $gg/gb \rightarrow t[b]H^+ \rightarrow bqq[b]\tau(had)v$ (see Section 4.1) and 5: $gg/gb \rightarrow t[b]H^+ \rightarrow t[b]tb \rightarrow bW[b]bWb \rightarrow b\ell v[b]bqqb$ (see Section 4.2).

ATL	AS		1	2	2	3	3	.	4		5
Uncertainty pre-	<i>iminary</i> value	S	В	S	В	S	В	S	В	S	В
$\tau \to \text{Resolution}$	$0.45 \times \sqrt{E}$	-2	+3	-	-	+8	-3	-4	-1	-	-
τ E Scale	-5%	-2	+5	-	-	0	-9	-15	-21	-	-
v E Seule	+5%	-5	-5	-	-	+8	+1	+4	+28	-	-
au-tag Efficiency	$\pm 5\%$	-5	-2	-	-	-8	-1	-8	-5	-	-
Jet E Resolution	$\begin{array}{c} 0.45\sqrt{E}, \eta < 3.2 \\ 0.63\sqrt{E}, \eta > 3.2 \end{array}$	-2	-3	-8	+5	+8	+3	-12	-3	-2	-4
Let E Scale	$+7(15)\%, \eta < (>)3.2$	-9	+12	+29	+22	+35	+19	+4	-18	+9	+8
Jet E Scale	$-7(15)\%, \eta < (>)3.2$	-5	-5	-21	-12	-19	-17	-31	+15	-8	-6
b-tag Efficiency	$\pm 5\% \varepsilon_{btag}$	0	-14	+4	-6	0	-3	-7	+3	-8	-10
h tag Rejection	-10%	-7	+10	0	+1	0	0	-2	-3	-4	+6
<i>b</i> -tag Rejection	+10%	+7	-2	0	0	0	-1	-3	-1	0	-5
$\mu \to \text{Resolution}$	$0.011/P_T \oplus 0.00017$	0	0	-4	+1	0	+1	0	0	-4	-5
u E Scale	-1%	0	0	0	+1	+4	-1	0	0	-4	-6
μ L State	+1%	0	0	-4	-1	0	0	0	0	+4	+7
μ Efficiency	$\pm 1\%$	0	0	0	-1	0	0	0	-2	-2	-1
e E Resolution	$0.0073 \times E_T$	0	0	0	0	0	-1	0	0	-4	-4
o E Scale	-0.5%	0	0	0	+1	0	-1	0	0	-4	-5
e E Scale	+0.5%	0	0	0	-1	+4	-1	0	0	+4	+6
e Efficiency	$\pm 0.2\%$	0	0	0	0	0	0	0	0	0	-1
Luminosity	-3%	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
Lummosity	+3%	+3	+3	+3	+3	+3	+3	+3	+3	+3	+3

ttbar control samples

- The **principle** in a nut shell:
 - collect pure samples of e.g. ttbar \rightarrow bqq b $\mu\nu$ events from data
 - replace the muon with a simulated tau lepton
 - use these events instead of MC for background estimation
- Tests indicate: a **precision of ~10%** in observables is achievable

Figure 16: $t\bar{t} \rightarrow b\tau(had)\nu bqq$: Left: $t \rightarrow b\tau(had)\nu$ momentum, both for the real and the scaled $t\bar{t}$ events. Right: The corresponding bin-by-bin ratio. The gray band represents $\pm 10\%$ around a ratio of 1.

Martin Flechl

LIPPSAL A

- Combination of all channels using **Profile Likelihood**→see Ofer Vitells' talk
- Including dominant systematic and statistical uncertainties
- Light H⁺: gap for intermediate tan β (discovery); heavy H⁺ difficult
- 1 fb⁻¹ corresponds to ~1 month at low luminosity; but: studies require understanding of high-level objects→1 fb⁻¹ ≠ first 1 fb⁻¹ !

Simulation Statistics

- Discovery contour when assuming an infinite number of simulated events \rightarrow i.e. neglecting uncertainty of finite MC statistics
- Hope that tan β gap can be closed by a large MC production \rightarrow main problem is ttbar; \approx 20M events would be optimal

Model-independent: $t \rightarrow bH^+$

- Sensitivity in terms of $BR(t \rightarrow bH^+)$ independently of physics model
- BR(H⁺ $\rightarrow \tau \nu$)=1 is assumed
- A light H^+ can be excluded for BR(t \rightarrow bH⁺)>1% with 10fb⁻¹

Model-independent: $\sigma x BR$

- Sensitivity in terms of $\sigma(t[b]H^+) \ge BR(H^+ \rightarrow \tau \nu)$
- Sensitivity for a cross section O(0.1pb)

ATLAS Collaboration,
Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics,
Section: Charged Higgs Boson Searches,
CERN-OPEN-2008-020, Geneva, 2008, to appear.

Conclusions & Outlook

- An update on charged Higgs searches with ATLAS has been presented
- For the MSSM, $m_{H^+} < m_t$, the charged Higgs boson can be excluded with a few years of low luminosity data.
 - For **discovery**, there is currently a **gap** for intermediate tan β . There is good reason to believe that we will be able to fill it.
- Heavy H^+ sensitivity only for large tan β .
 - Discovery: $(m_{H^+} [GeV], \tan \beta)$ from $(m_t, 25)$ to (350, 60)
 - Exclusion: $(m_t, 10)$ to (600, 60)
- Detector calibration and analysis tools refinement is the main challenge for the nearer future.
- A very exciting time is waiting for us...

Charged Higgs Prospects with ATLAS, cHarged08

Martin Flechl

41

Backup Slides

Charged Higgs Prospects with ATLAS, cHarged08

Martin Flechl

42

Some Simplifications

- p. 15: the assumed ttbar cross section: 833pb
- p. 18, 31: the true variables used for the likelihood are in fact transformations of the ones given [e.g. angle→1-cos(angle)]. Also, for obvious reasons, some of the angles can only be defined in the transverse plane. See the note for details.
- p. 24: The b and τ jet are required to be one of the four hardest jets in the event
- p. 25: The statement about ϕ is valid in the approximation $m_b=0$ for the W rest frame
- Selection cuts (general): typically a minimum p_T is required, e.g. "3 jets with p_T>30 GeV"
 For simplicity, these are only given if they are exceptional (beyond typical requirements), e.g. E_T^{miss}>120 GeV.
- Trigger (general): additional jet item usually omitted. Triggers incl. thresholds: xE80 e55 mu40 e22i_xE30 mu20_xE30 xE50_L1_TAU30 xE40_3j20_L1_TAU30

Other ATLAS Studies

- The studies shown so far have all been updated since 2006
- For completeness, the following slides show the (unchanged) status of other ATLAS studies
- All of them have been obtained with by simulation with a parametrized detector response

Charged Higgs Prospects with ATLAS, cHarged08

(Slide from B. Mohn)

m_{H^+} determination with $H^+ \rightarrow t b$

- In the tb channel the full invariant mass can be reconstructed but the channel suffers from the large irreducibel background and also from signal combinatorial background.
- It is possible to extract the mass using a likelihood method or by fitting the signal and background.
- One assumes that the background shape and normalisation can be found be fitting outside the signal region
- A Gaussian shape is assumed for the signal and an exponential for the background.
- Results show the precision on the mass determination from the likelihood and the fitting methods are comparable.

		v		
$m_{H^{\pm}} (\text{GeV})$	Likelihood		Fit	
	< m >	δm	< m >	δm
225.9	226.9	1.8		
271.1	270.1	10.1	271.0	10.3
317.8	320.2	11.3	316.4	11.5
365.4	365.4	12.1	363.8	12.5
413.5	417.4	17.6	412.6	17.9
462.1	465.9	24.1	460.4	24.4

Martin Flechl

45

$M_{\rm H^+}$ determination with ${\rm H^+} \rightarrow \tau \, \upsilon$

Both below and above M_{top} the $H^+ \rightarrow \tau \upsilon$ decay channel is the most sensitive channel for a charged Higgs discovery.

However the decay mode does not allow for the observation of a resonance peak above the background, and only the transverse mass can be detected.

A maximum likelihood method is used both below and above Mtop to extract the mass.

Precision down to a few % can be acheived.

HIGH MASS

$m_{H^{\pm}}$ (GeV)	Statistics only		With s	systematics
	$\langle m \rangle$	δm	$\langle m \rangle$	δm
225.9	226.4	1.7	225.9	1.7
271.1	271.1	2.0	270.9	2.3
317.8	318.3	3.0	319.9	3.5
365.4	365.7	4.6	365.2	4.7
413.5	413.8	4.5	414.9	4.7
462.1	462.6	6.0	460.8	6.3
510.9	511.9	7.4	511.7	9.2

LOW MASS

Generated H^{\pm}	Reconstructed H^{\pm}	Statistical	Systematic	Rel. precision
mass~(GeV)	mass~(GeV)	$\operatorname{error} (\operatorname{GeV})$	error (GeV)	$\Delta M/M~(\%)$
127.0	128.4	1.1	3.6	2.8
138.6	141.1	1.0	5.1	3.6
145.0	142.1	0.8	3.5	2.4
(Slide from B. M	ohn)	•		

Charged Higgs Prospects with ATLAS, cHarged08

$H+ \rightarrow Wh/WH$

• Searches involving decays to neutral Higgs bosons (h⁰, H⁰) have also been performed with ATLAS.

• In ATL-PHYS-99-025 (Assamagan) it was showed that despite good mass reconstruction and ttbar supression the discovery potential of the channel $(H^+ \rightarrow Wh^0, h^0 \rightarrow bb)$ is limited by the low signal rate.

- In ATL-PHYS-PUB-2005-017 (Mohn et al.) a large mass splitting MSSM scenario is assumer in which $M_{H^+} >> M_{H^0}$ opening the H⁺ \rightarrow WH⁰ decay channel.
- Despite large branching ratio the signal is found to be too much background like and impossible to extract.

(Slide from B. Mohn)

Charged Higgs in chargino-neutralino decay

• Selection efficiencies between 1% and 23% is obtained depending on tan β and M_{H^+} .

- A discovery potential is calculated by linear extrapolation between the simulated points, and is shown in the lower left figure.
- The left edge follows the limiting edge of the BR(H⁺ $\rightarrow \chi^{+} \chi^{0}$) while the right and lower edge follow the pattern of the NLO signal x-sec.
- Since no discriminating signature is found, the search is done as a counting experiment, hence relying on that the various backgrounds are measured through other channels.

• Many more MSSM points must be investigated before general conclusions can be made, but as a preliminary result the study shows that for a specific MSSM point charged higgs through SUSY decays may be detected with ATLAS.

Martin Flechl

UPPSALA UNIVERSITET

250 300

Charged Higgs Mass (GeV)

• A 5 sigma sensitivity seems possible only for high $\tan\beta$ and $M_{H+} \sim 250$ GeV. It is though expected that

these results could be improved by cuts using the specific properties of the charged Higgs.

W

H+

(Slide from B. Mohn)