

Letizia Lusito

University & INFN Bari

(on behalf of the CMS collaboration)

Reconstruction and identification of hadronic Tau decays with the CMS detector

Outline

- Tau properties
- Motivation
- Taus@CMS: the PF approach
- Tau base reconstruction
- High-level τ identification
- Conclusions
- Future work

Univ. & INFN Bari

Why tau physics is so interesting?

- New Physics could show up at LHC with taus in final states:
 - light SM Higgs boson (m_H <130-140 GeV/c²)
 - charged Higgs boson decays in τv
 - Susy decays at large value of $tan\beta(~10)$
 - new heavy gauge bosons or doubly-charged Higgs bosons in many extensions of the SM

BUT

- hadronic τ closely resemble QCD jets
- a significant fraction of the τ momentum escapes undetected with the v_{τ}

τ reconstruction and identification is an important part of the CMS physics programme

L. Lusito Univ. & INFN Bari

Tau@CMS:the PF approach

L. Lusito Univ. & INFN Bari

Tau Reconstruction

- Two distinct stages:
 - Common preselection: simple and robust methods to reduce backgrounds still keeping a large efficiency for all decay modes without biases, used to define CMS tau secondary datasets ("skims")

Sophisticated τ identification tunable for each physical analysis

L. Lusito Univ. & INFN Bari

Tau base reconstruction: the isolation algorithm

- PF-based Jet reconstruction (p_T>15 GeV/c)
 - At least one charged hadron with $p_T > 5$ GeV/c at a $\Delta R < 0.1$ from jet direction in the (η, ϕ) plane
 - Signal cone and isolation annulus definition around the leading track, typical values are for the signal cone $\Delta R=0.07$ and for the isolation annulus $\Delta R=0.45$
 - No charged hadron or photon candidates above a p_T threshold (1 GeV/c for the charged, 1.5 GeV/c for the gamma cand) in the isolation annulus

Jet reconstruction

Univ. & INFN Bari

16-19 September '08

For signal larger efficiency because of the larger average particle multiplicity in QCD jets→efficient discrimination variable for QCD suppression

L. Lusito Univ. & INFN Bari

Tau base reconstruction: the shrinking cone

- τ -jets become more collimated at higher energies
- better reconstruction performances achieved with a signal cone size which scales as $5/E_T$ with a min and a max set to 0.07 and 0.15 respectively (marginal efficiencies)

L. Lusito Univ. & INFN Bari

Efficiency 10 10⁻³ 20 80 120 140 40 60 100 Generated jet p₊ (GeV/c) cH[±]arged 08, 16-19 September '08

Tau base reconstruction: the shrinking cone

Better signal efficiency in the low-p_T region due to a better acceptance for the three-prong τ because of the larger signal cone in which all tracks can fit

L. Lusito Univ. & INFN Bari

Tau base reconstruction: global efficiencies

Global efficiencies of the preselection cuts as a function of p_T for the (new) shrinking and the (old) fixed cone

shrinking cone

Efficiencies respect to τ or QCD jets with a true visible p_T>5 GeV/c and true $|\eta|$ <2.5

fixed cone

Tau base reconstruction: global efficiencies

Global efficiencies of the preselection cuts as a function of η for the (new) shrinking and the (old) fixed cone

shrinking cone

Efficiencies respect to τ or QCD jets with a true visible $p_T>5$ GeV/c and true $|\eta|<2.5$

fixed cone

High-level identification criteria

Aimed at suppression of e and µ from EWK processes

MUON REJECTION

 Standard muon reconstruction (τ efficiency >99%, μ rejection efficiency 99%)

ELECTRON REJECTION

- Electron algorithm based on fast multivariate analysis of tracker and calorimeter informations (efficiency 95% for electrons, 5% for pions)
- Optimized electron veto (τ efficiency 92.5%, e efficiency 1.5%)

L. Lusito Univ. & INFN Bari

High-level identification criteria

Optimization of electron veto

- $E/P \rightarrow$ summed energy of all ECAL clusters in $|\eta| < 0.04$ with respect to the extrapolated impact point of the leading track on the ECAL surface divided by the momentum of the leading charged hadron
- H_{3x3}/P →summed energy of all HCAL cluster within ΔR <0.184 around the extrapolated impact point of the leading track on the ECAL surface divided by the momentum of the leading charged hadron

E/P<0.8 or H_{3x3} /P>0.15 for τ cand not pre-id. as e E/P<0.95 or H_{3x3} /P>0.05 for τ cand pre-id. as e

L. Lusito Univ. & INFN Bari

High-level identification criteria

Efficiency plot for several variables defined for the e rejection and the optimized electron veto e Efficiency

 τ_{had} Efficiency

L. Lusito Univ. & INFN Bari

Conclusions

- Leading track requirement provides a significant suppression of QCD backgrounds (dominated by low-p_T QCD jets)
- The shrinking cone diminishes the effectiveness of isolation requirement but it allows a better selection of three-prongs decays at low energy, not selected with the fixed cone approach because of the smaller size of the signal cone

Future work

- Integration of the photon conversion reconstruction into the particle-flow framework is under development: its inclusion in the highlevel analysis tools will allow a better tuning of photon isolation
- Multivariate discrimination techniques
- Data-driven techniques for the estimation of tau efficiency and fake rate from the first data

BACKUP

L. Lusito Univ. & INFN Bari

CMS overview

SubDetector	Resolution	Coverage
Tracker	σ _{pT} /pT = 1-5% pT	η <2.5
ECAL	σ _E /E=(3%/√E)+0.5%	η <3
HCAL	$\sigma_{\rm E}/{\rm E} = (65\%/{\rm \sqrt{E}})+0.05\%$	η <3 B, 5 F
Muon system	σ _{pT} /pT=5% @1TeV	η <2.4

L. Lusito Univ. & INFN Bari

Samples and efficiencies

- Signal 75000 Z->tau tau (both decaying hadronically); QCD background 720000 events with p_T_hat from 5 to 120 GeV/c
- Efficiencies are defined per tau candidate with respect to those with $p_T>5GeV/c$ and |n|<2.5; the reconstructed jet axis within $\Delta R<0.15$ respect to the simulated tau or within $\Delta R<0.3$ respect to the simulated QCD jets
- Marginal efficiencies: measured with respect to the tau candidates that satisfy the previous cuts
- All efficiencies are offline efficiencies: they don't include trigger efficiency

Other electron rejection variables

- H/P: the summed energy of all HCAL clusters divided by the momentum of the leading charged hadron inside the jet
- H_{max}/P: the energy of the leading HCAL cluster divided by the momentum of the leading charged hadron inside the jet

Figure 12.3: The difference between the true and reconstructed values of the τ -jet direction components, ϕ (left plot) and η (right plot), where the reconstructed jet direction is determined using calorimeter information. Three τ -jet energy ranges are shown which have been determined using Monte Carlo truth information. All τ leptons used to make these plots were positively charged.

L. Lusito Univ. & INFN Bari

Figure 12.6: The efficiency of the ECAL isolation for τ jets as a function of $E_{\rm T}^{\rm MC}$ (left plot) and $|\eta^{\rm MC}|$ (right plot) for $P_{\rm isol}^{\rm cut} = 5 \, {\rm GeV}/c$. The efficiency is shown separately for different final states of hadronic decays of τ lepton.

L. Lusito Univ. & INFN Bari

Figure 12.7: The efficiency of the electromagnetic isolation criterion, for τ jets and QCD jets in the different bins of the true transverse energy when the value of $P_{\text{isol}}^{\text{cut}}$ is varied.

L. Lusito Univ. & INFN Bari

Figure 12.9: The tracker isolation efficiency for τ jets (left plot) and QCD jets (right plot) as a function of the isolation cone R_i for 2 values of the signal cone $R_S=0.07$ (full symbols) and $R_S=0.04$ (open symbols). In order of decreasing efficiency the symbols correspond to E_T^{MC} bins of 130–150, 80–110, 50–70 and 30–50 GeV. The remaining tracker isolation parameters are: $R_m=0.1$, $p_T^i=1$ GeV/c, $\Delta z_{tr}=2$ mm and the leading track $p_T > 6$ GeV/c.

L. Lusito Univ. & INFN Bari 16-

Table 12.2: The efficiency of the track counting requirement for τ and QCD jets in different bins of $E_{\rm T}^{\rm MC}$.

QCD jets; $E_{\mathrm{T}}^{\mathrm{MC}}$ (GeV)	30–50	50–70	80-110	130-150
1 track	63 %	72 %	69 %	60 %
3 tracks	7 %	9%	9 %	13 %
1 or 3 tracks	70 %	81%	78 %	73 %
$ au$ jets; $E_{\mathrm{T}}^{\mathrm{MC}}$ (GeV)	30–50	50–70	80-110	130-150
1 track	81 %	77 %	71 %	70 %
3 tracks	10 %	16 %	16 %	20 %
1 or 3 tracks	91 %	93 %	87 %	90 %