Data-Driven Methods for the Estimation of $t\overline{t}$ Backgrounds to Charged Higgs Searches

Trevor Vickey

University of Wisconsin, Madison On behalf of the ATLAS Collaboration

September 18, 2008

cHarged 2008—Prospects for Charged Higgs Discovery at Colliders

Introduction

Many talks have highlighted the importance of tau leptons in Charged Higgs Searches

- Consider the case of a light H⁺ (mH⁺ < mt)
- Production at the LHC via gg→ttbar→H*bWb
- With the exception of small tan β values, BR (H+ \rightarrow tau nu) ~1

This talk will focus on a data-driven method for estimating ttbar backgrounds

• Study to appear in: ATLAS Collaboration, "Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics", CERN-OPEN-2008-020, Geneva, 2008

Motivation

Signal Final State

 $H^+
ightarrow au_H
u; \ W
ightarrow qq$ (Elias Coniavitis' Talk)

 $H^+
ightarrow au_L
u; W
ightarrow qq$ (Ofer Vitells' Talk)

 $H^+
ightarrow au_H
u; \ W
ightarrow l
u$ (Thies Ehrich's Talk)

Dominant Background

 $W \to \tau_H \nu; W \to qq$

 $W \to \tau_L \nu; W \to qq$

$$W \to \tau_H \nu; W \to l \nu$$

Do not trust Tevatron extrapolations Difficult to obtain clean samples from data Unknowns related to analysis-specific variables exist

Motivation

Signal Final State

 $H^+ \to \tau_H \nu; W \to qq$

 $H^+ \to \tau_L \nu; W \to qq$

 $H^+ \to \tau_H \nu; W \to l \nu$

Background Control Sample

Change muons into taus using the TAUOLA package

Leptonically- and hadronically-decaying taus can be emulated

Does not rely on the TevatronClean samples can be obtained from dataUnknowns related to analysis-specific variables included

Obtaining µ Samples from Data (selection criteria optimized for efficiency and purity)

The Di-Lepton Control Sample

Selection criteria:

- At least two isolated muons with pT > 20 GeV
- Z veto [70, 110 GeV]
- MET > 40 GeV

Process	cross section (pb)	events used	events passed	expected events in 1 fb ⁻¹
<i>tī</i> signal	9.3	1265	359	2641.2
<i>tī</i> background	823.7	46500	23	407.4
W+1J	65.3	5000	1	13.1
W+2J	71.0	9450	1	7.7
W+3J	53.3	6500	0	<8.2
W+4J	28.0	7000	3	12.0
W+5J	15.3	5000	0	<3.1
Z+1J	172.7	3750	3	138.2
Z+2J	65.7	14500	17	77.0
Z+3J	20.7	2000	6	62.1
Z+4J	5.9	5250	18	20.1
Z+5J	2.1	2950	11	8.0
$b\overline{b}(mu20mu20)$	261	2435	3	321.6
Total BG	-	-	-	1066.8

Efficiency = 28% **Purity = 71%**

The Lepton+Jets Control Sample

Selection criteria (designed to reject bbbar \rightarrow 1µ + X events):

- One isolated muon; two jets with pT > 40 GeV and within 20 GeV of the nominal W mass
- MET > 40 GeV; large event transverse energy (> 250 GeV)
- At least one jet must have been tagged as a b-jet

Process	cross section (pb)	events used	events passed	expected events	
				$\sin 1 \text{ fb}^{-1}$	
<i>tī</i> signal	119.0	12864	1109	10262.5	
<i>tt</i> background	714.0	42714	77	1287.1	
W+1J	65.3	3000	0	<21.8	
W+2J	71.0	6750	1	10.5	
W+3J	53.25	5000	8	85.2	
W+4J	28.0	6250	66	295.1	
W+5J	15.3	3250	158	743.6	
Z+1J	172.7	1750	0	$<\!98.7$	
Z+2J	65.7	18000	0	<3.7	
Z+3J	20.7	2000	0	<10.3	
Z+4J	5.9	6150	20	19.0	
Z+5J	2.1	2950	76	55.0	
$b\overline{b}(mu20)$	87600	35576	3	1147	
Total BG	-	-		3642.3	
Efficiency = 8.6%					
Trevor Vickey / cHarc	aed 2008	Purity = 74%			

7

Turning Muons into Taus

The Method

Based on a method used in ATLAS for SM and MSSM neutral Higgs searches

Generate control samples for the Z+jets backgrounds

Original implementation (ATLAS CSC studies)

- Done at the ntuple-level and used the full ATLAS detector simulation
- These are the results presented in this talk

Results

(a few simple and complex variables for each final-state)

$t\bar{t} \rightarrow b\tau_L \nu bqq$

Lepton Transverse Momentum (charged lepton from tau decay):

Reconstructed hadronic top quark mass (uninfluenced by replacement)

 $t\bar{t} \rightarrow b\tau_L \nu bqq$

W Transverse Mass Distribution (complex quantity; relevant correlations preserved)

$$m_T = \sqrt{2p_T^l p_T^{miss} (1 - \cos(\Delta\phi))}$$

$t\bar{t} \to b\tau_H \nu bqq$

Tau Transverse Momentum (hadronic)

Transverse Momentum Ratio (tau pT / pT of hardest jet not used in top reco.)

13

 $t\bar{t} \rightarrow b\tau_H \nu bqq$

Top Quark Transverse Momentum (complex quantity)

 $t\bar{t} \rightarrow b\tau_H \nu b l \nu$

Event Missing Transverse Energy (complex quantity; resulting from the combination of all objects in the event)

Current Efforts

Future implementations in ATLAS will merge the event at the hits level

- · Subtract muon tracks and calorimeter depositions from the event
- Add tau tracks and calorimeter depositions
- Re-run the ATLAS reconstruction on the entire merged event, followed by the full Charged Higgs Analysis

Trevor Vickey / cHarged 2008

Systematics

In early running, uncertainties in the shape are predominantly statistical

 Error bars are mostly dependent on the size of these control samples (e.g., ttbar di-lepton and lepton+jets events with μ final-states)

Toy Monte Carlo "pseudo-experiments" can be used to evaluate systematics

- Contamination of the control sample is certainly one of the larger sources
- · Particle identification efficiencies and resolutions will also come into play

Summary

Backgrounds to Charged Higgs searches from ttbar events can be estimated using data-driven control samples

- Final states containing leptonically- or hadronically-decaying taus can be emulated
- The shapes obtained from the control sample agree well (~10%) with those from Monte Carlo
- Normalization can also be estimated (through event counting / algebraic means, or using fits of the shapes to data)

Future

- Study to appear in: ATLAS Collaboration, "Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics", CERN-OPEN-2008-020, Geneva, 2008
- Refinement of the method: on-going efforts to remove / replace at the detector hits level
- Investigate using events with electrons in the final state (roughly double the statistics available)

Many other uses for similar data-MC hybrid samples

- Minimum-bias (Data) + Single Particle (MC): Identification / Efficiency studies
- Minimum-bias (Data) + Minimum-bias (Data) + ...+ Background (MC): Evaluate event selection criteria at high luminosity during the low-luminosity era
- Additional data-driven background control samples for other analyses: e.g., Z→tau tau

Backup Slides

The ATLAS Experiment

Event Selection Criteria

Only muons were considered in this study:

- One (or two) isolated muons (in the case of two muons require opposite charge)
- Isolation requirement: Sum ET (EM) in cone of 0.2 / muon pT < 0.1
- Muon pT > 6 GeV
- Muon(s) must be central (i.e., $|\eta| < 2.5$)
- Specific to the ATLAS reconstruction software (STACO muons with a 0 < chi2 < 20)