

ATLAS Trigger Performance and Initial Running

Frank Winklmeier (CERN)

on behalf of the ATLAS Trigger/DAQ community

cHarged 2008 Uppsala, Sweden 17 September 2008

Outline

- Charged Higgs trigger menu
- The ATLAS electron and muon triggers
- Commissioning of the ATLAS trigger
- From startup to physics trigger menus
- Expected performance of lepton triggers
- Measuring trigger efficiencies from data
- Towards higher luminosities

Reference (unless stated otherwise): ATLAS Collaboration, Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics, CERN-OPEN-2008-020, Geneva, 2008, to appear.

Charged Higgs "trigger menu"

• Possible trigger signatures for a charged Higgs:

- For m(H⁺) above/below top mass, we can look for these signatures:

$$\begin{split} &tt \rightarrow 2b(W_{lep}, W_{had})(\tau_{lep}, \tau_{had}) \\ &tbH^{*} \rightarrow 2b(W_{lep}, W_{had})(\tau_{lep}, \tau_{had}) \\ &tbH^{*} \rightarrow 4b(W_{lep}, W_{had})(W_{lep}, W_{had}) \end{split}$$

(fully leptonic decays omitted due to small branching ratio)

This talk will concentrate on the lepton (e, μ) triggers
(see the following talk by Richard Brenner for hadronic tau triggers)

Strategy

- Use unprescaled lepton triggers with lowest thresholds where possible
- At higher luminosity use multi-object triggers. Example of a H+ "trigger menu" with rate estimates based on 7 million minbias events:

10 ³¹ Signature	Rate/Hz	10 ³³ Signature	Rate/Hz
xe70	0.2 ± 0.1	xe80	< 10
e25i tight	0.7 ± 0.3	e55	10 ± 10
		e25i+xe30	10 ± 10
mu20	1.7 ± 0.4	mu40	10 ± 10
		mu20+xe30	20 ± 15
tau20i+xe30	5.8 ± 0.8	tau35i+xe50	< 10
tau15i+xe20+3j18	5.4 ± 0.8	tau35i+xe40+3j18	< 10

For much more details see Chris Potter's talk yesterday.

> Example signatures from an earlier study. Menus have evolved since then. ATL-COM-PHYS-2008-026

ATLAS Level-1 triggers

ATLAS Level-1 triggers

ATLAS Level-1 triggers

The less known ATLAS triggers

• Triggers relevant during startup period:

Beam Pickup Triggers at ±175m from ATLAS Trigger on filled bunches Provides reference timing

Minbias Trigger Scintillators mounted on LAr cryostat 32 sectors (individual or multiplicity triggers) Main trigger for initial running period

Beam Conditions Monitor Diamond senors next to Pixel 1ns resolution complements MBTS

in addition:

Random triggers Bunch group triggers

Luminosity monitor within forward shielding (η~6) can complement MBTS

Commissioning of the ATLAS trigger

• Many competing needs for the trigger during startup

- Timing-in of detectors, trigger and DAQ
- Detector commissioning
- Commissioning of Level-1 trigger and HLT
- Provide calibration and alignment samples
- Provide samples for initial physics studies
- Tier-0 (reconstruction) commissioning
- All of the above while following the LHC beam conditions

Commissioning of the ATLAS trigger

• Many competing needs for the trigger during startup

- Timing-in of detectors, trigger and DAQ
- Detector commissioning
- Commissioning of Level-1 trigger and HLT
- Provide calibration and alignment samples
- Provide samples for initial physics studies
- Tier-0 (reconstruction) commissioning

• All of the above while following the LHC beam conditions

- no beam
- single beam clockwise
- single beam counter-clockwise
- beam on collimator
- beam through ATLAS
- one turn
- many turns
- two beams
- Not to mention two colliding beams... ;-)

Four phases of commissioning

• 4 phases for commissioning

- Rates controlled by Level-1 prescales, HLT mostly in pass-through mode

Level 1

Random, BPTX, MBTS, BCM, LUCID Muon triggers in "coincidence mode" Low threshold L1Calo items

In case luminosity higher than expected use higher thresholds

High Level Trigger

Empty HLT menu (re-run offline to check algorithms)

Simple HLT algorithms (pass-through) Seeded from MBTS or full reconstruction

Four phases of commissioning

• 4 phases for commissioning

- Rates controlled by Level-1 prescales, HLT mostly in pass-through mode

• From commissioning to physics menu:

Trigger	L1	Rate w/o	Pre-	HLT Rate
mgger	item	prescale [Hz]	scale	[Hz]
em5_passHLT	EM3	40000	20000	2
em10_passHLT	EM7	5000	1300	4
em15_passHLT	EM13	800	200	4
em15i_passHLT	EM13I	390	100	4
em20_passHLT	EM18	280	70	4
em20i_passHLT	EM18I	100	25	4
em25i_passHLT	EM23I	41	10	4
em105_passHLT	EM100	1	1	1
2em5_passHLT	2EM3	6500	1600	4
2em15_passHLT	2EM13	80	20	4
2em20_passHLT	2EM18	35	10	4

From "Level1-only selection" with HLT in pass-through mode ...

... to "10³¹ physics menu" without prescales

Signature	L1 item	EF selection	L1 Rate	Pre- scale	HLT Rate	Motivation
e10	EM7	medium	5.0 kHz	1	21 Hz	e^{\pm} from b,c decays, E/p studies
γ20	EM18	loose	0.3 kHz	1	$5.4\pm0.2~\text{Hz}$	direct photon production, jet calibration
						using γ -jet events, high- p_{T} physics
e20	EM18	loose	0.3 kHz	1	$4.3\pm0.2~\text{Hz}$	high- $p_{\rm T}$ physics, $Z \rightarrow ee, W \rightarrow ev$
em105_passHLT	EM100		1 Hz	1	$1.0\pm0.1\mathrm{Hz}$	New physics, check for possible problems
2e5	2EM3	medium	6.5 kHz	1	6 Hz	$J/\psi \rightarrow ee, Y \rightarrow ee$, Drell-Yan production
2γ10	2EM7	loose	0.5 kHz	1	< 0.1 Hz	di-photon cross-section
2e10	2EM7	loose	0.5 kHz	1	$0.4\pm0.2~\text{Hz}$	$Z \rightarrow ee$

First menu for physics running at 10³¹ cm⁻¹s⁻¹

• Comprehensive studies have been done for a "10³¹ menu"

- Contains ~130 Level-1 items and ~180 HLT selection chains
- e/γ and muon triggers are unprescaled, except EM3
- Rates estimated using 7 million minbias events ($\sigma \sim 70$ mb)
- Already contains high and multi-object thresholds for debugging/testing

Electron trigger rates

- Expected electron trigger rates in 10³¹ menu
 - Optimized to select events with at least 1 electron above 10 GeV and 1 photon above 20 GeV
 - In addition double object triggers for J/ ψ , Y, Z \rightarrow ee and very high p_{τ} trigger
 - J/ ψ and Y decays are challenging for the L1 trigger (noise ~ 0.5 GeV/region-of-interest)

Muon trigger rates

- Expected muon trigger rates in 10³¹ menu
 - All muon thresholds are unprescaled (both L1 and HLT)
 - Largest source of muons are b/c quarks and π/K in-flight decays

Expected performance of lepton triggers

Measuring trigger efficiencies from data

• Possible definitions of trigger efficiencies

- Absolute: with respect to MC truth (useful to check reconstruction improvements)
- Relative to another trigger (e.g. muon with respect to minbias trigger)
- Relative to offline reconstruction

Both e/gamma and muon groups are using "Tag & Probe" method:

- Other methods (e.g. orthogonal triggers) used as cross-check

(1) Clean signal sample $(Z, J/\psi \rightarrow I^+I^-)$

- (2) Select track that triggered the event ("Tag")
- (3) Find other track using offline criteria ("Probe")
- (4) Determine efficiency by applying trigger selection on Probe

Need a high purity signal sample Biases must be checked carefully

Efficiencies with first data: e/gamma

• e20: Efficiencies using Tag&Probe for 50 pb⁻¹

- A sample of $Z \rightarrow$ ee events (no background) was used to exercise the Tag&Probe method
- Average overall efficiency (after EF) compared to offline is (99.41 ± 0.05) %
- Expect similar numbers for $J/\psi \rightarrow$ ee (more signal and background)
- But expect much larger error (1-2%) for initial running with not well understood detector

Efficiencies with first data: muons

• Tag&Probe using $Z \rightarrow \mu \mu$

- Study with ~50 pb⁻¹.Require $p_T > 20$ GeV
- Use inner detector (ID-Probe) or muon spectrometer (MS-Probe) as probe system
- Overall efficiency (77.4 ± 0.4) %
- Very good agreement between Tag&Probe and MC truth (~99%)

• Tag&Probe using $J/\psi \rightarrow \mu\mu$

- Study with 300k J/ ψ events (~100pb⁻¹), p_T > 6 GeV
- Achieve better than 5% precision
- But need a dedicated calibration trigger for this

Towards higher luminosities (in 2009)

General

- Need to adjust trigger menus with LHC running conditions and luminosity
- The first data will tell us in which direction the next menus need to evolve

• Level-1

- Limited number of thresholds available per object type
- Introduce higher Level-1 thresholds at cost of some of the lower ones
- But keep most threshold identical to provide reference points across luminosities

High Level Trigger

- Average output rate is fixed at ~ 200 Hz
- Cannot rely on Level-1 alone to control the rates. Need to apply tighter selections.
- Pile-up effects become significant. Need to study this in detail.
- Deploy selections (e.g. isolation, large missing E_{τ} , flavor tagging) that were running in passthrough mode at lower luminosity.

Summary

• Commissioning of the ATLAS trigger

- Trigger needs commissioning with real data just like any other detector
- Rates controlled by Level-1 prescales until HLT algorithms under control
- Detailed program defined to go from commissioning to physics menu

• Trigger menus

- Trigger menus defined and studied for 10³¹ and beyond
- Will be adjusted as soon as we get first collisions

• Efficiency and performance of lepton triggers

- First checks of performance of lepton triggers within a few pb⁻¹
- Tag&Probe method used to measure trigger efficiencies from data
- To achieve sub-percent level uncertainties need ~50 pb⁻¹
- More detailed studies including pile-up and cavern background are needed

The first beam! triggers in ATLAS on Sept. 10th

• TGC (muon) and MBTS triggers during "injection-shots":

• BPTX trigger of circulating beam (8 revolutions):

Backup slides

Example items of a 10³³ menu

• Towards a 10³³ trigger menu

 Representative sample of Level-1 and HLT trigger items expected to be deployed <u>without</u> prescale factors at a luminosity of 2 x 10³³ cm⁻² s⁻¹

L1 item	Rate (kHz)
EM18I	12.0
2EM11I	4.0
MU20	0.8
2MU6	0.2
J140	0.2
3J60	0.2
4J40	0.2
J36_XE60	0.4
tau16I_XE30	2.0
MU10_EM11I	0.1
Others	5.0

HLT item	Rate (Hz)
e22i	40
2e12i	< 1
γ55i	25
2γ17i	2
µ20i	40
2µ10	10
j370	10
4j90	10
j65_xE70	20
τ35i_xE45	5
$2\mu 6$ for <i>B</i> -physics	10

