SuperIso program and flavor data constraints

Nazila Mahmoudi

Uppsala University

cH⁺arged 2008 – Uppsala – September 17, 2008

壨

11

誰

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
•				
Motivations				

Searches for New Physics

- direct detection of new physics particles
- nature of Dark Matter
- indirect evidence for new physics

Indirect constraints

- search for new physics effects
- guideline for other searches
- check consistencies with direct observations

イロト イポト イヨト イヨト

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
•				
Motivations				

Searches for New Physics

- direct detection of new physics particles
- nature of Dark Matter
- indirect evidence for new physics

Indirect constraints

- search for new physics effects
- guideline for other searches
- check consistencies with direct observations

Ξ

(日) (同) (日) (日)

Introduction	SUSY Constraints	Superlso	Results	Conclusion
	0			
Where to look for?				

- R-parity conserving models
- R-parity violating models

R-parity conserving models can also be divided according to how SUSY breaks:

- mSUGRA { m_0 , $m_{1/2}$, A_0 , $\tan \beta$, $\operatorname{sign}(\mu)$ }
- NUHM {mSUGRA parameters + M_A and μ }
- AMSB { m_0 , $m_{3/2}$, $\tan \beta$, $\operatorname{sign}(\mu)$ }
- GMSB { Λ , M_{mess} , N_5 , c_{grav} , $\tan \beta$, $\operatorname{sign}(\mu)$ }

In these models, SUSY effects always appear in loops

ightarrow difficult to detect unless the SM process is absent or loop-mediated.

ightarrow Good places to look for: $B - \bar{B}$ mixing, $b
ightarrow s\gamma$, ...

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
	•0			
Where to look for?				

- R-parity conserving models
- R-parity violating models

R-parity conserving models can also be divided according to how SUSY breaks:

- mSUGRA { m_0 , $m_{1/2}$, A_0 , $\tan\beta$, $\operatorname{sign}(\mu)$ }
- NUHM {mSUGRA parameters + M_A and μ }
- AMSB { m_0 , $m_{3/2}$, $\tan \beta$, $\operatorname{sign}(\mu)$ }
- GMSB { Λ , M_{mess} , N_5 , c_{grav} , $\tan \beta$, $\operatorname{sign}(\mu)$ }

In these models, SUSY effects always appear in loops

 \rightarrow difficult to detect unless the SM process is absent or loop-mediated.

ightarrow Good places to look for: $B - \bar{B}$ mixing, $b
ightarrow s\gamma$, ...

Introduction	SUSY Constraints	Superlso	Results	Conclusion
	0			
Where to look for?				

- R-parity conserving models
- R-parity violating models

R-parity conserving models can also be divided according to how SUSY breaks:

- mSUGRA $\{m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)\}$
- NUHM {mSUGRA parameters + M_A and μ }
- AMSB $\{m_0, m_{3/2}, \tan\beta, \operatorname{sign}(\mu)\}$
- GMSB {A, M_{mess} , N_5 , c_{grav} , $\tan \beta$, $\operatorname{sign}(\mu)$ }

In these models, SUSY effects always appear in loops

ightarrow difficult to detect unless the SM process is absent or loop-mediated.

 \rightarrow Good places to look for: $B - \bar{B}$ mixing, $b \rightarrow s\gamma$, ...

(日) (母) (王) (王) (王)

Introduction	SUSY Constraints	Superlso	Results	Conclusion
	•0			
Where to look for?				

- R-parity conserving models
- R-parity violating models

R-parity conserving models can also be divided according to how SUSY breaks:

- mSUGRA $\{m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)\}$
- NUHM {mSUGRA parameters + M_A and μ }
- AMSB $\{m_0, m_{3/2}, \tan\beta, \operatorname{sign}(\mu)\}$
- GMSB {A, M_{mess} , N_5 , c_{grav} , $\tan \beta$, $\operatorname{sign}(\mu)$ }

In these models, SUSY effects always appear in loops

 \rightarrow difficult to detect unless the SM process is absent or loop-mediated.

 \rightarrow Good places to look for: $B - \overline{B}$ mixing, $b \rightarrow s\gamma$, ...

Introduction	SUSY Constraints	Superlso	Results	Conclusion
	•0			
Where to look for?				

- R-parity conserving models
- R-parity violating models

R-parity conserving models can also be divided according to how SUSY breaks:

- mSUGRA { m_0 , $m_{1/2}$, A_0 , $\tan \beta$, $\operatorname{sign}(\mu)$ }
- NUHM {mSUGRA parameters + M_A and μ }
- AMSB $\{m_0, m_{3/2}, \tan\beta, \operatorname{sign}(\mu)\}$
- GMSB {A, M_{mess} , N_5 , c_{grav} , $\tan \beta$, $\operatorname{sign}(\mu)$ }

In these models, SUSY effects always appear in loops

 \rightarrow difficult to detect unless the SM process is absent or loop-mediated.

 \rightarrow Good places to look for: $B - \overline{B}$ mixing, $b \rightarrow s\gamma$, ...

(日) (四) (王) (王) (王)

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
	00			
SUSY Constraints				

Observable	Constraint measure
$BR(B_s \rightarrow \mu \mu)$	0 ± 0
ΔM_{B_s}	0 ± 0
$\sin^2 \theta_{eff}$	0.007 ± 0
BR(B ightarrow au u)	0.011 ± 0
M _W	0.051 ± 0.001
$BR(b ightarrow s \gamma)$	0.188 ± 0.003
$\Delta_{0-}(b ightarrow s \gamma)$	0.208 ± 0.006
$(g-2)_{\mu}$	0.390 ± 0.012
$\Omega_{DM}h^2$	0.443 ± 0.006
m_h	0.453 ± 0.053

Molding power of individual observables for a specific MSSM scenario with $\mu > {\rm 0}$

Allanach, Dolan and Weber, arXiv:0806.1184

Introduction	SUSY Constraints	Superiso	Results	Conclusion
	00			
SUSY Constraints				

Observable	Constraint measure
$BR(B_s \rightarrow \mu \mu)$	0 ± 0
ΔM_{B_s}	0 ± 0
$\sin^2 \theta_{eff}$	0.007 ± 0
$BR(B \rightarrow \tau \nu)$	0.011 ± 0
Mw	0.051 ± 0.001
$BR(b ightarrow s \gamma)$	0.188 ± 0.003
$\Delta_{0-}(b ightarrow s \gamma)$	0.208 ± 0.006
$(g-2)_{\mu}$	0.390 ± 0.012
$\Omega_{DM}h^2$	0.443 ± 0.006
m _h	0.453 ± 0.053

Molding power of individual observables for a specific MSSM scenario with $\mu > {\rm 0}$

Allanach, Dolan and Weber, arXiv:0806.1184

↓□▶ ↓@▶ ↓ E▶ ↓ E▶ ↓ E

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		•••••		
SuperIso v2.3				

- Automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios
- Compatible with the SUSY Les Houches Accord Format (SLHA2)
- Interfaced with Softsusy and Isajet for automatic spectrum calculation
- Modular program, with a well-defined structure
- Complete updated reference manual available

イロト イポト イヨト イヨト

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		•••••		
SuperIso v2.3				

- Automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios
- Compatible with the SUSY Les Houches Accord Format (SLHA2)
- Interfaced with Softsusy and Isajet for automatic spectrum calculation
- Modular program, with a well-defined structure
- Complete updated reference manual available

イロト イポト イヨト イヨト

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		•••••		
SuperIso v2.3				

- Automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios
- Compatible with the SUSY Les Houches Accord Format (SLHA2)
- Interfaced with Softsusy and Isajet for automatic spectrum calculation
- Modular program, with a well-defined structure
- Complete updated reference manual available

- ロト - (同 ト - (回 ト -)

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		•00000000		
SuperIso v2.3				

- Automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios
- Compatible with the SUSY Les Houches Accord Format (SLHA2)
- Interfaced with Softsusy and Isajet for automatic spectrum calculation
- Modular program, with a well-defined structure
- Complete updated reference manual available

- ㅋㅋ ㅋㅋㅋ ㅋㅋㅋ ㅋㅋㅋ

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		•00000000		
SuperIso v2.3				

- Automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios
- Compatible with the SUSY Les Houches Accord Format (SLHA2)
- Interfaced with Softsusy and Isajet for automatic spectrum calculation
- Modular program, with a well-defined structure
- Complete updated reference manual available

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		•00000000		
SuperIso v2.3				

- Automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios
- Compatible with the SUSY Les Houches Accord Format (SLHA2)
- Interfaced with Softsusy and Isajet for automatic spectrum calculation
- Modular program, with a well-defined structure
- Complete updated reference manual available

(日) (母) (王) (王) (王)

Introduction	SUSY Constraints	SuperIso	Results	Conclusion	
		000000000			
SuperIso v2.3: implemented observables					

1. Isospin asymmetry of $B \rightarrow K^* \gamma$ at NLO

In the Standard Model: $\Delta_{0-} \simeq 8\%$

Kagan and Neubert, Phys. Lett. B539, 227 (2002)

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		000000000		
SuperIso v2.3: implemented observables				

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) - \Gamma(B^{-} \to K^{*-}\gamma)}{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) + \Gamma(B^{-} \to K^{*-}\gamma)}$$

$$\Delta_{0-} = \operatorname{Re}(b_{d} - b_{u}) , \ b_{q} = \frac{12\pi^{2}f_{B} Q_{q}}{m_{b} T_{1}^{B \to K^{*}} a_{7}^{c}} \left(\frac{f_{K^{+}}^{\perp}}{m_{b}} K_{1} + \frac{f_{K^{*}} m_{K^{*}}}{6\lambda_{B} m_{B}} K_{2}\right)$$

$$= C_{7} + \frac{\alpha_{s}(\mu)C_{F}}{4\pi} \left(C_{1}(\mu)G_{1}(s_{p}) + C_{8}(\mu)G_{8}\right) + \frac{\alpha_{s}(\mu_{h})C_{F}}{4\pi} \left(C_{1}(\mu_{h})H_{1}(s_{p}) + C_{8}(\mu_{h})H_{8}\right)$$

In the Standard Model: $\Delta_{0-} \simeq 8\%$

Kagan and Neubert, Phys. Lett. B539, 227 (2002)

(日) (部) (目) (日)

Nazila Mahmoudi

Ξ

in MFV

Introduction O	SUSY Constraints	SuperIso ○●○○○○○○○○	Results 000	Conclusion O
SuperIso v2.3:	implemented observabl	es		
1. Isospin a	symmetry of ${\cal B} o {\cal K}^* \gamma$:	at NLO		1
	$b \xrightarrow{0,0,} s$	a a s b	O _g s	

In the Standard Model: $\Delta_{0-} \simeq 8\%$

Kagan and Neubert, Phys. Lett. B539, 227 (2002)

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		000000000		
SuperIso v2.3: implemented observables				

In the Standard Model: $\Delta_{0-}\simeq 8\%$

Kagan and Neubert, Phys. Lett. B539, 227 (2002)

Introduction	SUSY Constraints	SuperIso	Results	Conclusion	
		000000000			
SuperIso v2.3: implemented observables					

1. Isospin asymmetry of $B \rightarrow K^* \gamma$ at NLO

In the Standard Model: $\Delta_{0-}\simeq 8\%$

Kagan and Neubert, Phys. Lett. B539, 227 (2002)

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		000000000		
SuperIso v2.3:	implemented observables	5		

2. Inclusive branching ratio of $B \rightarrow X_s \gamma$ at NNLO

Misiak and Steinhauser, Nucl. Phys. B764 (2007)

SM prediction: $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.15 \pm 0.23) \times 10^{-4}$

Ξ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		000000000		
SuperIso v2.3: i	mplemented observable	s		

2. Inclusive branching ratio of
$$B \rightarrow X_s \gamma$$
 at NNLO

Misiak and Steinhauser, Nucl. Phys. B764 (2007)

SM prediction: $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.15 \pm 0.23) \times 10^{-4}$

Nazila Mahmoudi

1

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		000000000		
SuperIso v2.3:	implemented observable	s		

2. Inclusive branching ratio of $B \rightarrow X_s \gamma$ at NNLO

Misiak and Steinhauser, Nucl. Phys. B764 (2007)

SM prediction: $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.15 \pm 0.23) \times 10^{-4}$

Nazila Mahmoudi

Ξ

< 日 > < 部 > < 注 > < 注 >

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		000000000		
SuperIso v2.3:	implemented observable	s		

2. Inclusive branching ratio of $B \rightarrow X_s \gamma$ at NNLO

Misiak and Steinhauser, Nucl. Phys. B764 (2007)

SM prediction: ${\cal B}[ar B o X_s \gamma] = (3.15 \pm 0.23) imes 10^{-4}$

Nazila Mahmoudi

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		000000000		
C 1 0.0				

SuperIso v2.3: implemented observables

3. Branching ratio of $B_s \rightarrow \mu^+ \mu^-$

$$\mathcal{B}(B_{s} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}} M_{B_{s}}^{3} |V_{tb}V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}}}$$

$$\left(\left(1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}}\right) + \left(1 - \frac{4m_{\mu}^{$$

$$\times \left\{ \left(1 - \frac{4m_{\mu}^2}{M_{B_s}^2} \right) M_{B_s}^2 |C_s|^2 + \left| C_P M_{B_s} - 2 C_A \frac{m_{\mu}}{M_{B_s}} \right|^2 \right\}$$

<ロト <部ト <きト <きト = 3

Upper limit: $\mathcal{B}(B_s \to \mu^+ \mu^-) < 5.8 \times 10^{-8}$ at 95% C.L. SM predicted value: $\mathcal{B}(B_s \to \mu^+ \mu^-)_{SM} \sim 3 \times 10^{-9}$

Interesting in the high $\tan \beta$ regime, where the SUSY contributions can lead to an O(100) enhancement over the SM:

$${\cal B}(B_s o \mu^+ \mu^-)_{MSSM} \sim {m_b^2 m_\mu^2 an^6 \, eta \over M_A^4}$$

Nazila Mahmoudi

cH[±]arged 2008 – Uppsala – September 17, 2008

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		000000000		
Consider 0.2. Inclusion of the state of the				

SuperIso v2.3: implemented observables

3. Branching ratio of $B_s \rightarrow \mu^+ \mu^-$

$$\mathcal{B}(B_{s} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}} M_{B_{s}}^{3} |V_{tb}V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}}}$$

$$\times \left\{ \left(1 - \frac{4m_{\mu}^2}{M_{B_s}^2} \right) M_{B_s}^2 |C_S|^2 + \left| C_P M_{B_s} - 2 C_A \frac{m_{\mu}}{M_{B_s}} \right|^2 \right\}$$

Upper limit: $\mathcal{B}(B_s \to \mu^+ \mu^-) < 5.8 \times 10^{-8}$ at 95% C.L. SM predicted value: $\mathcal{B}(B_s \to \mu^+ \mu^-)_{SM} \sim 3 \times 10^{-9}$

Interesting in the high $\tan \beta$ regime, where the SUSY contributions can lead to an O(100) enhancement over the SM:

$${\cal B}(B_s o \mu^+ \mu^-)_{MSSM} \sim {m_b^2 m_\mu^2 an^6 \, eta \over M_A^4}$$

Nazila Mahmoudi

cH[±]arged 2008 – Uppsala – September 17, 2008

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
	00	000000000	000	
C	· · · · · · · · · · · · · · · · · · ·			

SuperIso v2.3: implemented observables

3. Branching ratio of $B_s \rightarrow \mu^+ \mu^-$

$$\mathcal{B}(B_{s} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}} M_{B_{s}}^{3} |V_{tb}V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}}}$$

$$\times \left\{ \left(1 - \frac{4m_{\mu}^2}{M_{B_s}^2} \right) M_{B_s}^2 |C_S|^2 + \left| C_P M_{B_s} - 2 C_A \frac{m_{\mu}}{M_{B_s}} \right|^2 \right\}$$

Upper limit: $\mathcal{B}(B_s \to \mu^+ \mu^-) < 5.8 imes 10^{-8}$ at 95% C.L.

SM predicted value: ${\cal B}(B_{s} \to \mu^{+}\mu^{-})_{\it SM} \sim 3 \times 10^{-9}$

Interesting in the high $\tan \beta$ regime, where the SUSY contributions can lead to an O(100) enhancement over the SM:

$${\cal B}(B_{m s}
ightarrow \mu^+ \mu^-)_{MSSM} \sim rac{m_b^2 m_\mu^2 an^6 eta}{M_A^4}$$

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		000000000		
SuperIso v2.3: impl	emented observables			

4. Branching ratio of $B \rightarrow \tau \nu$

Tree level process, mediated by W^+ and H^+ , higher order corrections from sparticles

Also implemented in Superlso:

$$R_{\tau\nu_{\tau}}^{\rm MSSM} = \frac{{\rm BR}(B_u \to \tau\nu_{\tau})_{\rm MSSM}}{{\rm BR}(B_u \to \tau\nu_{\tau})_{\rm SM}} = \left[1 - \left(\frac{m_B^2}{m_{H^+}^2}\right)\frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta}\right]$$

Nazila Mahmoudi

cH[±]arged 2008 – Uppsala – September 17, 2008

(日) (部) (E) (E) (E)

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		00000000		
SuperIso v2.3: impl	emented observables			

4. Branching ratio of $B \rightarrow \tau \nu$

Tree level process, mediated by W^+ and H^+ , higher order corrections from sparticles

Also implemented in SuperIso:

$$R_{\tau\nu_{\tau}}^{\rm MSSM} = \frac{{\rm BR}(B_u \to \tau\nu_{\tau})_{\rm MSSM}}{{\rm BR}(B_u \to \tau\nu_{\tau})_{\rm SM}} = \left[1 - \left(\frac{m_B^2}{m_{H^+}^2}\right)\frac{\tan^2\beta}{1 + \epsilon_0\tan\beta}\right]^2$$

Nazila Mahmoudi

(□) <@) < E) < E) < E</p>

Introduction	SUSY Constraints	SuperIso	Results	Conclusion	
		0000000000			
Superiso v2.3: implemented observables					

5. Branching ratio of $B \rightarrow D \tau \nu$

$$\frac{d\Gamma(B \to D\ell\overline{\nu})}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{192\pi^3} \rho_V(w) \left[1 - \frac{m_\ell^2}{m_B^2} \left| 1 - \frac{t(w)}{(m_b - m_c)} \frac{m_b}{m_{H^+}^2} \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta} \right|^2 \rho_S(w) \right]$$

$w = v_B \cdot v_D$ ρ_V and ρ_S : vector and scalar Dalitz density contributions

- Depends on V_{cb} , which is known to better precision than V_{ub}
- Larger branching fraction than $B \to \tau \nu$
- Experimentally challenging due to the presence of neutrinos in the final state

Implemented in Superlso: $\mathcal{B}(B^- \to D^0 \tau^- \nu)$ and $\frac{\mathcal{B}(B^- \to D^0 \tau^- \nu)}{\mathcal{B}(B^- \to D^0 e^- \nu)}$

Nazila Mahmoudi

1

《曰》 《聞》 《臣》 《臣》

Introduction	SUSY Constraints	SuperIso	Results	Conclusion	
		0000000000			
Superiso v2.3: implemented observables					

5. Branching ratio of $B \rightarrow D \tau \nu$

Another tree level process:

 $\frac{d\Gamma(B \to D\ell\bar{\nu})}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{192\pi^3} \rho_V(w) \left[1 - \frac{m_\ell^2}{m_B^2} \left| 1 - \frac{t(w)}{(m_b - m_c)} \frac{m_b}{m_{H^+}^2} \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta} \right|^2 \rho_S(w) \right]$

 $w = v_B \cdot v_D$ ρ_V and ρ_S : vector and scalar Dalitz density contributions

- Depends on V_{cb} , which is known to better precision than V_{ub}
- Larger branching fraction than $B \to \tau \nu$
- Experimentally challenging due to the presence of neutrinos in the final state

Implemented in Superlso: $\mathcal{B}(B^- \to D^0 \tau^- \nu)$ and $\frac{\mathcal{B}(B^- \to D^0 \tau^- \nu)}{\mathcal{B}(B^- \to D^0 e^- \nu)}$

Nazila Mahmoudi

Introduction	SUSY Constraints	SuperIso	Results	Conclusion	
		0000000000			
Superiso v2.3: implemented observables					

5. Branching ratio of $B \rightarrow D\tau\nu$

 $\frac{d\Gamma(B \to D\ell\overline{\nu})}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{192\pi^3} \rho_V(w) \left[1 - \frac{m_\ell^2}{m_B^2} \left| 1 - \frac{t(w)}{(m_b - m_c)} \frac{m_b}{m_{H^+}^2} \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta} \right|^2 \rho_S(w) \right]$

 $w = v_B \cdot v_D$ ρ_V and ρ_S : vector and scalar Dalitz density contributions

- Depends on V_{cb} , which is known to better precision than V_{ub}
- Larger branching fraction than B
 ightarrow au
 u
- Experimentally challenging due to the presence of neutrinos in the final state

Implemented in SuperIso: $\mathcal{B}(B^- \to D^0 \tau^- \nu)$ and $\frac{\mathcal{B}(B^- \to D^0 \tau^- \nu)}{\mathcal{B}(B^- \to D^0 e^- \nu)}$

Nazila Mahmoudi

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		0000000000		
SuperIso v2.3:	implemented observabl	es		

6. Branching ratio of $K \rightarrow \mu \nu$

Tree level process similar to B ightarrow au u

Two observables are implemented in SuperIso:

$$\begin{aligned} \frac{\Gamma(K \to \mu\nu)}{\Gamma(\pi \to \mu\nu)} &= \left| \frac{V_{us}}{V_{ud}} \right|^2 \frac{f_k^2 m_K}{f_\pi^2 m_\pi} \left(\frac{1 - m_\ell^2 / m_K^2}{1 - m_\ell^2 / m_\pi^2} \right)^2 \\ &\times \left(1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right)^2 (1 + \delta_{\rm em}) \end{aligned}$$

$$R_{\ell 23} = \left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{us}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right| = \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$

Large uncertainty from f_K/f_{π}

cH[±]arged 2008 - Uppsala - September 17, 2008

Э

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		0000000000		
SuperIso v2.3:	implemented observal	oles		

6. Branching ratio of $K \rightarrow \mu \nu$

Tree level process similar to B
ightarrow au
u

Two observables are implemented in SuperIso:

$$\begin{aligned} \frac{\Gamma(K \to \mu\nu)}{\Gamma(\pi \to \mu\nu)} &= \left| \frac{V_{us}}{V_{ud}} \right|^2 \frac{f_K^2 m_K}{f_\pi^2 m_\pi} \left(\frac{1 - m_\ell^2/m_K^2}{1 - m_\ell^2/m_\pi^2} \right)^2 \\ &\times \left(1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta} \right)^2 (1 + \delta_{\rm em}) \end{aligned}$$

$$R_{\ell 23} = \left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{us}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right| = \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$

Large uncertainty from f_K/f_{π}

Nazila Mahmoudi

cH[±]arged 2008 - Uppsala - September 17, 2008

1

イロト イポト イヨト イヨト

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		0000000000		
SuperIso v2.3:	implemented observal	oles		

6. Branching ratio of $K \rightarrow \mu \nu$

Tree level process similar to B
ightarrow au
u

Two observables are implemented in SuperIso:

$$\frac{\Gamma(K \to \mu\nu)}{\Gamma(\pi \to \mu\nu)} = \left|\frac{V_{us}}{V_{ud}}\right|^2 \frac{f_K^2 m_K}{f_\pi^2 m_\pi} \left(\frac{1 - m_\ell^2/m_K^2}{1 - m_\ell^2/m_\pi^2}\right)^2 \\ \times \left(1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s}\right) \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta}\right)^2 (1 + \delta_{\rm em})$$

$$R_{\ell 23} = \left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{us}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right| = \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$

 \triangle Large uncertainty from f_K/f_{π}

Nazila Mahmoudi

cH[±]arged 2008 - Uppsala - September 17, 2008

イロト イポト イヨト イヨト

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
		0000000000		
SuperIso v2.3:	implemented observabl	es		

7. Anomalous magnetic moment of muon $a_{\mu} = (g-2)/2$

Latest measurement on e^+e^- data: $a_\mu^{
m exp}=(11\,659\,208.0\pm6.3) imes10^{-10}$

Bennett et al., Phys. Rev. D73 (2006)

SM prediction: $a_{\mu}^{
m SM} = (11\,659\,178.5\pm 6.1) imes 10^{-10}$

MSSM contributions:

 $\delta a^{
m SUSY}_{\mu} = \delta a^{\chi^0}_{\mu} + \delta a^{\chi^\pm}_{\mu} + \delta a^{
m SUSY}_{\mu, \; 2 \,
m loop}$

Deviation from the SM:

$$\delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (29.5 \pm 8.8) \times 10^{-10}$$

Nazila Mahmoudi

cH[±]arged 2008 - Uppsala - September 17, 2008

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		0000000000		
SuperIso v2.3: impl	emented observables			

7. Anomalous magnetic moment of muon $a_{\mu} = (g-2)/2$

Latest measurement on e^+e^- data: $a_\mu^{
m exp}=(11\,659\,208.0\pm 6.3) imes 10^{-10}$

Bennett et al., Phys. Rev. D73 (2006)

SM prediction: $a_{\mu}^{
m SM} = (11\,659\,178.5\pm 6.1) imes 10^{-10}$

Deviation from the SM:

 $\delta a_{\mu} = a_{\mu}^{
m exp} - a_{\mu}^{
m SM} = (29.5 \pm 8.8) imes 10^{-10}$

Nazila Mahmoudi

cH[±]arged 2008 – Uppsala – September 17, 2008

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		0000000000		
SuperIso v2.3: impl	emented observables			

7. Anomalous magnetic moment of muon $a_{\mu} = (g-2)/2$

Latest measurement on e^+e^- data: $a_\mu^{
m exp}=(11\,659\,208.0\pm 6.3) imes 10^{-10}$

Bennett et al., Phys. Rev. D73 (2006)

SM prediction: $a_{\mu}^{
m SM} = (11\,659\,178.5\pm 6.1) imes 10^{-10}$

Deviation from the SM:

 $\delta a_{\mu} = a_{\mu}^{
m exp} - a_{\mu}^{
m SM} = (29.5 \pm 8.8) imes 10^{-10}$

Nazila Mahmoudi

cH[±]arged 2008 - Uppsala - September 17, 2008

Introduction	SUSY Constraints	Superiso	Results	Conclusion
		000000000		
SuperIso v2.3				

Can be downloaded from:

http://www3.tsl.uu.se/~nazila/superiso/

Manual:

F. Mahmoudi, arXiv:0710.2067, Comput. Phys. Commun. 178, 745 (2008)

F. Mahmoudi, arXiv:0808.3144 [hep-ph]

For more information:

F. Mahmoudi, JHEP 0712, 026 (2007)
M. Ahmady & F. Mahmoudi, Phys. Rev. D75 (2007)
A. Arbey & F. Mahmoudi, Phys. Lett. B (2008)
D. Eriksson, F. Mahmoudi, O. Stål, arXiv:0808.3551 [hep-ph]

Э

イロト イポト イヨト イヨト

Introduction	SUSY Constraints	Superiso	Results	Conclusion
			000	
Combined constra	ints in the MSSM			

mSUGRA

F. Mahmoudi, arXiv:0808.3144

Ξ

イロト イポト イヨト イヨト

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
			000	
Combined cons	traints in the MSSM			

mSUGRA

NUHM

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

F. Mahmoudi, arXiv:0808.3144

Nazila Mahmoudi

cH[±]arged 2008 – Uppsala – September 17, 2008

Ξ

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
			000	
Combined constrain	ts in the NMSSM			

CNMSSM

F. Mahmoudi, preliminary results

Ξ

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

			Contaitabion
0 00	000000000	000	0

Application to the charged Higgs \rightarrow see the next talk by Oscar Stål.

▲掃▶ ▲注▶ ▲注▶

Introduction	SUSY Constraints	Superlso	Results	Conclusion
				•
Conclusion				

• Indirect constraints and in particular flavor physics are essential to restrict new physics parameters

• That will become even more interesting when combined with LHC data

• This kind of analysis should be generalized to more new physics scenarios

Ongoing Developments

- Extension to NMSSM
- Implementation of the relic density calculation (with A. Arbey)
- Extension to NMFV
- Implementation of other observables

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
				•
Conclusion				

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- This kind of analysis should be generalized to more new physics scenarios

- Extension to NMSSM
- Implementation of the relic density calculation (with A. Arbey)
- Extension to NMFV
- Implementation of other observables

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
				•
Conclusion				

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- This kind of analysis should be generalized to more new physics scenarios

- Extension to NMSSM
- Implementation of the relic density calculation (with A. Arbey)
- Extension to NMFV
- Implementation of other observables

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
				•
Conclusion				

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- This kind of analysis should be generalized to more new physics scenarios

- $\bullet\,$ Extension to NMSSM $\checkmark\,$
- Implementation of the relic density calculation (with A. Arbey)
- Extension to NMFV
- Implementation of other observables

(日) (同) (日) (日) (日)

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
				•
Conclusion				

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- This kind of analysis should be generalized to more new physics scenarios

- $\bullet\,$ Extension to NMSSM $\checkmark\,$
- \bullet Implementation of the relic density calculation (with A. Arbey) \checkmark
- Extension to NMFV
- Implementation of other observables

(日) (同) (日) (日) (日)

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
				•
Conclusion				

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- This kind of analysis should be generalized to more new physics scenarios

- $\bullet\,$ Extension to NMSSM $\checkmark\,$
- \bullet Implementation of the relic density calculation (with A. Arbey) \checkmark
- Extension to NMFV
- Implementation of other observables

(日) (同) (日) (日) (日)

Introduction	SUSY Constraints	SuperIso	Results	Conclusion
				•
Conclusion				

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- This kind of analysis should be generalized to more new physics scenarios

- $\bullet\,$ Extension to NMSSM $\checkmark\,$
- \bullet Implementation of the relic density calculation (with A. Arbey) \checkmark
- Extension to NMFV
- Implementation of other observables