Physics at Hadron Colliders

Lecture II

Beate Heinemann

University of California, Berkeley and Lawrence Berkeley National Laboratory

CERN, Summer Student Lectures, 2008

1

Outline

- Lecture I: Introduction
 - Outstanding problems in particle physics
 - and the role of hadron colliders
 - Current and near future colliders: Tevatron and LHC
 - Hadron-hadron collisions
- Lecture II: Standard Model Measurements
 - Standard Model Cross Section Measurements as Tests of QCD
 - Precision measurements in electroweak sector
- Lecture III: Searches for the Higgs Boson
 - Standard Model Higgs Boson
 - Higgs Bosons beyond the Standard Model
- Lecture IV: Searches for New Physics
 - Supersymmetry
 - High Mass Resonances (Extra Dimensions etc.)

Standard Model Cross Section Measurements as test of QCD

- Jets
- W and Z bosons
- Top Quark Production

What is a Cross Section?

- Differential cross section: $d\sigma/d\Omega$:
 - Probability of a scattered particle in a given quantum state per solid angle $\mathrm{d}\Omega$
 - E.g. Rutherford scattering experiment
- Other differential cross sections: dσ/dE_T(jet)
 - Probability of a jet with given E_T
- Integrated cross section
 - Integral: $\sigma = \int d\sigma / d\Omega \ d\Omega$

Measurement:
$$\sigma = (N_{obs} - N_{bg})/(\epsilon L)$$

Luminosity

Luminosity Measurement

 $R_{pp} = \mu_{pp} \cdot f_{BC} = \sigma_{inel} \cdot \varepsilon_{pp} \cdot \delta(L) \cdot L$ σ_{inel} – inelastic x-section *L* – luminosity $\sigma_{\scriptscriptstyle LM}$ ε_{pp} - acceptance for a single pp $f_{\rm bc}$ – Bunch Crossing rate $\delta(L)$ – detector non-linearity μ_a - # of pp /BC • Measure events with $0\frac{\hat{g}}{\Xi}$ 80 CDF pp and $p\bar{p}$ 70 ${\bf J}_{
m pp}$ interactions 60 50 Related to R_{pp} 40 Normalize to E710/E811 30 measured inelastic pp 20 cross section 10 0 Tevatron: 60.7+/-2.4 mb 10 1000 100 $\overline{s} \; (\text{GeV})$ LHC: 70-120 mb

Jet Cross Sections

Inclusive jets: processes qq, qg, gg

- Highest E_T probes shortest distances
 - Tevatron: $r_q < 10^{-18}$ m
 - LHC: r_q<10⁻¹⁹ m (?)
 - Could e.g. reveal substructure of quarks
- Tests perturbative QCD at highest energies

Jet Cross Section History

- Run I (1996):
 - Excess at high E_T
 - Could be signal for quark substructure?!?

Jet Cross Section History

Since Run I:

- Revision of parton density functions
 - Gluon is uncertain at high x
 - It including these data describes data well

Jet Cross Sections in Run II

- Excellent agreement with QCD calculation over 8 orders of magnitude!
- No excess any more at high E_T
 - Large pdf uncertainties will be constrained by these data

High Mass Dijet Event: M=1.4 TeV

CDF Run II Preliminary

583 GeV (raw) = 0.31 (detector) 0.43 (corr z) Jet Et2 = 633 GeV (corr) 546 GeV (raw) = -0.30 (detector)

-0.19 (corr z)

Jets at the LHC

W and Z Bosons

- Focus on leptonic decays:
 - Hadronic decays ~impossible due to enormous QCD dijet background
- Selection:
 - Z:
 - Two leptons p_T>20 GeV
 - Electron, muon, tau
 - W:
 - One lepton p_T>20 GeV
 - Large imbalance in transverse momentum
 - Missing E_T>20 GeV
 - Signature of undetected particle (neutrino)
- Excellent calibration signal for many purposes:
 - Electron energy scale
 - Track momentum scale
 - Lepton ID and trigger efficiencies
 - Missing E_T resolution
 - Luminosity ...

Lepton Identification

Electron and Muon Identification

Desire:

- High efficiency for isolated electrons
- Low misidentification of jets

- Performance:
 - Efficiency:
 - 60-100% depending on |η|
 - Measured using Z's

Electrons and Jets

- Jets can look like electrons, e.g.:
 - photon conversions from π^{0} 's: ~13% of photons convert (in CDF)
 - early showering charged pions
- And there are lots of jets!!!

Jets faking Electrons

- Jets can pass electron ID cuts,
 - Mostly due to
 - early showering charged pions
 - Conversions: $\pi^0 \rightarrow \gamma\gamma \rightarrow ee + X$
 - Semileptonic b-decays
 - Difficult to model in MC
 - Hard fragmentation
 - Detailed simulation of calorimeter and tracking volume
- Measured in inclusive jet data at various E_T thresholds
 - Prompt electron content negligible:
 - N_{jet}~10 billion at 50 GeV!
 - Fake rate per jet:
 - CDF, tight cuts: 1/10000
 - ATLAS, tight cuts: 1/80000
 - Typical uncertainties 50%

W's and Z's

Z mass reconstruction

Invariant mass of two leptons

 $m = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$

- Sets electron energy scale by comparison to LEP measured value
- W mass reconstruction
 - Do not know neutrino p_z
 - No full mass resonstruction possible
 - Transverse mass:

$$m_T = \sqrt{|p_T^{\ell}|^2 + |p_T^{\nu}|^2 - (\vec{p}_T^{\ell} + \vec{p}_T^{\nu})^2}$$

Tevatron W and Z Cross Section Results

- Uncertainties:
 - Experimental: 2%
 - Theortical: 2%
 - Luminosity: 6%
- Can we use these processes to normalize luminosity?
 - Is theory reliable enough?

More Differential W/Z Measurements

[9

LHC signals of W's and Z's with 50 pb⁻¹

- 50 pb⁻¹ yield clean signals of W's and Z's
- Experimental precision
 - ~5% for 50 pb⁻¹ ⊕ ~10% (luminosity)
 - ~2.5% for 1 fb⁻¹ ⊕ ~10% (luminosity)

Top Quark Production and Decay

• At Tevatron, mainly produced in pairs via the strong interaction

Decay via the electroweak interactions Br(t →Wb) ~ 100%
 Final state is characterized by the decay of the W boson

Different sensitivity and challenges in each channel

SM: $t\bar{t}$ pair production, Br(t \rightarrow bW)=100%, Br(W \rightarrow lv)=1/9=11%

dilepton (4/81) 2 leptons + 2 jets + missing E_T I+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets (here: I=e,μ)

SM: $t\bar{t}$ pair production, Br(t \rightarrow bW)=100%, Br(W->lv)=1/9=11%

SM: $t\bar{t}$ pair production, Br(t \rightarrow bW)=100%, Br(W->lv)=1/9=11%

SM: $t\bar{t}$ pair production, Br(t \rightarrow bW)=100%, Br(W->lv)=1/9=11%

Top Event Categories

Finding the Top at Tevatron and LHC without b-quak identification

- Tevatron:
 - Top is overwhelmed by backgrounds:
 - Even for 4 jets the top fraction is only 30%
 - Use b-jets to purify sample
- LHC
 - Signal clear even without b-tagging: S/B>1.5

Finding the b-jets

- Exploit large lifetime of the b-hadron
 - B-hadron flies before it decays: d=cτ
 - Lifetime τ =1.5 ps⁻¹
 - d=cτ = 460 μm
 - Can be resolved with silicon detector resolution
- Procedure "Secondary Vertex":
 - reconstruct primary vertex:
 - resolution ~ 30 μm
 - Search tracks inconsistent with primary vertex (large d₀):
 - Candidates for secondary vertex
 - See whether three or two of those intersect at one point
 - Require displacement of secondary from primary vertex
 - Form L_{xy}: transverse decay distance projected onto jet axis:
 - $L_{xy} > 0$: b-tag along the jet direction => real b-tag or mistag
 - L_{xy}<0: b-tag opposite to jet direction => mistag!
 - Significance: e.g. $\delta L_{xy} / L_{xy} > 7$ (i.e. 7σ significant displacement)
- More sophisticated techniques exist

Characterise the B-tagger: Efficiency

(can use top events directly to measure efficiency at LHC)

Characterise the B-tagger: Mistag rate

- Mistag Rate measurement:
 - Probability of light quarks to be misidentified
 - Use "negative" tags: L_{xy}<0</p>
 - Can only arise due to misreconstruction
 - Mistag rate for $E_T = 50$ GeV:
 - Tight: 0.5% (ε=43%)
 - Loose: 2% (ε=50%)
 - Depending on physics analyses:
 - Choose "tight" or "loose" tagging algorithm

The Top Signal: Lepton + Jets

Select:

- 1 electron or muon
- Large missing E_T
- 1 or 2 b-tagged jets

Data and Monte Carlo Comparison

The Top Signal: Dilepton

The Top Cross Section

Tevatron

- Measured using many different techniques
- Good agreement
 - between all measurements
 - between data and theory
- Precision: ~13%

LHC:

- Cross section ~100 times larger
- Measurement will be one of the first milestones (already with 10 pb⁻¹)
 - Test prediction
 - demonstrate good understanding of detector
- Expected precision
 - ~4% with 100 pb⁻¹

Precision Measurement of Electroweak Sector of the Standard Model

- W boson mass
- Top quark mass
- Implications for the Higgs boson

The W boson, the top quark and the Higgs boson

- Top quark is the heaviest known fundamental particle
 - Today: m_{top}=172.6+-1.4 GeV
 - Run 1: m_{top}=178+-4.3 GeV/c²
 - Is this large mass telling us something about electroweak symmetry breaking?
 - Top yukawa coupling:
 - H>/(√2 mtop) = 1.008+-0.008
- Masses related through radiative corrections:
 - m_W~M_{top}²
 - m_w~ln(m_H)
- If there are new particles the relation might change:
 - Precision measurement of top quark and W boson mass can reveal new physics

W Boson mass

Real precision measurement:

- LEP: M_W=80.367±0.033 GeV/c²
- Precision: 0.04%
 - => Very challenging!
- Main measurement ingredients:
 - Lepton p_T
 - Hadronic recoil parallel to lepton: u_{ll}
- Z→II superb calibration sample:
 - but statistically limited:
 - About a factor 10 less Z's than W's
 - Most systematic uncertainties are related to size of Z sample
 - Will scale with $1/\sqrt{N_z}$ (=1/ \sqrt{L})

$$m_T = \sqrt{2p_T^{\ l} \not\!\!p_T (1 - \cos \Delta \phi)},$$
$$\not\!\!p_T \approx |p_T + u_{||}|$$

$$m_T \approx 2p_T \sqrt{1 + u_{||}/p_T} \approx 2p_T + u_{||}$$

Lepton Momentum Scale and Resolution

Systematic uncertainty on momentum scale: 0.04%

Systematic Uncertainties

m_T Fit	Uncertain	ties		
Source	$W \to \mu \nu$	$W \to e \nu$	Correlatio	on
Tracker Momentum Scale	17	17	100%	
Calorimeter Energy Scale	0	25	0%	
Lepton Resolution	3	9	0%	
Lepton Efficiency	1	3	0%	Limited by data
Lepton Tower Removal	5	8	100%	statistics
Recoil Scale	9	9	100%	
Recoil Resolution	7	7	100%	
Backgrounds	9	8	0%	.
PDFs	11	11	100%	Limited by data
W Boson p_T	3	3	100%	and theoretical
Photon Radiation	12	11	100%	understanding
Statistical	54	48	0%	
Total	60	62	-	

TABLE IX: Uncertainties in units of MeV on the transverse mass fit for m_W in the $W \to \mu\nu$ and $W \to e\nu$ samples.

- Overall uncertainty 60 MeV for both analyses
 - Careful treatment of correlations between them
- Dominated by stat. error (50 MeV) vs syst. (33 MeV)

W Boson Mass

New world average: M_w =80398 ± 25 MeV Ultimate precision: Tevatron: 15 MeV LHC: unclear (5 MeV?)

Top Mass Measurement: $tt \rightarrow (blv)(bqq)$

- 4 jets, 1 lepton and missing E_T
 - Which jet belongs to what?
 - Combinatorics!
- B-tagging helps:
 - 2 b-tags =>2 combinations
 - 1 b-tag => 6 combinations
 - 0 b-tags =>12 combinations
- Two Strategies:
 - Template method:
 - Uses "best" combination
 - Chi2 fit requires m(t)=m(t)
 - Matrix Element method:
 - Uses all combinations
 - Assign probability depending on kinematic consistency with top

Top Mass Determination

- Inputs:
 - Jet 4-vectors
 - Lepton 4-vector
 - Remaining transverse energy p_{T,UE}:
 - $p_{T,v} = -(p_{T,l} + p_{T,UE} + \sum p_{T,jet})$
- Constraints:
 - M(Iv)=M_W
 - M(qq)=M_W
 - M(t)=M(t)
- Unknown:
 - Neutrino p_z
- 1 unknown, 3 constraints:
 - Overconstrained
 - Can measure M(t) for each event: m_t^{reco}
 - Leave jet energy scale ("JES") as free parameter

Selecting correct combination 20-50% of the time

Example Results on m_{top}

Combining M_{ton} Results

DØ-I

- Excellent results in each channel
 - Dilepton
 - Lepton+jets
 - All-hadronic
- Combine them to improve precision
 - Include Run-I results
 - Account for correlations
- Uncertainty: 1.4 GeV
 - Dominated by syst. uncertainties
- Precision so high that theorists wonder about what it's exact definition is!

Best Independent Measurements of the Mass of the Top Quark (*=Preliminary)

190

170

Top Quark Mass [GeV]

150

Tevatron/LHC expect to improve precision to ~1 GeV

March 2008

Implications for the Higgs Boson

Conclusions

- Perturbative QCD describes hadron collider data successfully:
 - Jet cross sections: $\Delta\sigma/\sigma \approx 20-100\%$
 - W/Z cross section: $\Delta\sigma/\sigma \approx 6\%$
 - Top cross section: $\Delta\sigma/\sigma \approx 15\%$
- High Precision measurements
 - W boson mass: $\Delta M_W/M_W = 0.031\%$
 - top quark mass: $\Delta m_{top}/m_{top}=0.8\%$
- Standard Model still works!
 - Higgs boson constrained
 - 114<m_H<160 GeV/c² at 95% C.L.
 - Let's look for it in the next lecture!