

Figure 1. There are a lot of established c baryons, 17 in all.



Figure 2. The  $\Lambda_c$  branching fractions for the 2002–2014 Reviews. The normalization fraction is from two discordant, model-dependent measurements, with a  $\pm 26\%$  error.



Figure 3. The  $\Lambda_c$  branching fractions for 2015. The normalization fraction is from Zupanc et al., PRL 113 (2014) 042002, measuring  $e^+e^- \rightarrow D^{(*)-}\bar{p}\pi^+\Lambda_c^+$ . The error is now  $\pm 5.3\%$ .

## $\Xi_c^+$ DECAY MODES

Mode

Fraction  $(\Gamma_i/\Gamma)$  Co

Confidence level

No absolute branching fractions have been measured. The following are branching *ratios* relative to  $\Xi^- 2\pi^+$ .

| Cabibbo-favored (S = -2) decays — relative to $\Xi^- 2\pi^+$                |                                                                             |     |        |                  |     |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----|--------|------------------|-----|
| $\Gamma_1$                                                                  | $p2K_S^0$                                                                   | -   | 0.08   | $37 \pm 0.021$   |     |
| $\Gamma_2$                                                                  | $\Lambda \overline{K}^{0} \pi^{+}$                                          |     |        | _                |     |
| Γ <sub>3</sub>                                                              | $\Sigma(1385)^+\overline{K}^0$                                              | [a] | 1.0    | $\pm 0.5$        |     |
| Γ <sub>4</sub>                                                              | $\Lambda K^{-}2\pi^{+}$                                                     |     | 0.32   | 23±0.033         |     |
| Γ <sub>5</sub>                                                              | $\Lambda \overline{K}^*(892)^0 \pi^+$                                       | [a] | <0.16  | õ                | 90% |
| Γ <sub>6</sub>                                                              | $\Sigma(1385)^{+}K^{-}\pi^{+}$                                              | [a] | < 0.23 | 3                | 90% |
| Γ <sub>7</sub>                                                              | $\Sigma^+ \dot{K}^- \pi^+$                                                  |     | 0.94   | $\pm 0.10$       |     |
| Г <sub>8</sub>                                                              | $\Sigma^+\overline{K}^*(892)^0$                                             | [a] | 0.81   | $1 \pm 0.15$     |     |
| Γ <sub>9</sub>                                                              | $\Sigma^0 K^- 2\pi^+$                                                       |     | 0.27   | 7 $\pm 0.12$     |     |
| Γ <sub>10</sub>                                                             | $\Xi^0 \pi^+$                                                               |     | 0.55   | $5\pm0.16$       |     |
| Γ <sub>11</sub>                                                             | $\Xi^{-}2\pi^{+}$                                                           |     | DEF    | FINED AS 1       |     |
| Γ <sub>12</sub>                                                             | $\Xi(1530)^{0}\pi^{+}$                                                      | [a] | < 0.10 | )                | 90% |
| Γ <sub>13</sub>                                                             | $\Xi^0 \pi^+ \pi^0$                                                         |     | 2.3    | $\pm 0.7$        |     |
| Γ <sub>14</sub>                                                             | $\Xi^0 \pi^- 2\pi^+$                                                        |     | 1.7    | $\pm 0.5$        |     |
| Γ <sub>15</sub>                                                             | $\Xi^0 e^+ \nu_e$                                                           |     | 2.3    | $^{+0.7}_{-0.8}$ |     |
| Г <sub>16</sub>                                                             | $\varOmega^-  {\cal K}^+  \pi^+$                                            |     | 0.07   | 7 ±0.04          |     |
| Cabibbo-suppressed decays — relative to $\Xi^- 2\pi^+$                      |                                                                             |     |        |                  |     |
| Γ <sub>17</sub>                                                             | $pK^-\pi^+$                                                                 |     | 0.21   | $\pm 0.04$       |     |
| Γ <sub>18</sub>                                                             | $p \overline{K}^*(892)^0$                                                   | [a] | 0.11   | $16 \pm 0.030$   |     |
| Γ <sub>19</sub>                                                             | $\Sigma^+ \pi^+ \pi^-$                                                      |     | 0.48   | $8	\pm	0.20$     |     |
| Γ <sub>20</sub>                                                             | $\Sigma^{-}2\pi^{+}$                                                        |     | 0.18   | $3 \pm 0.09$     |     |
| Γ <sub>21</sub>                                                             | $\Sigma^+ K^+ K^-$                                                          |     | 0.15   | $5\pm0.06$       |     |
| Γ <sub>22</sub>                                                             | $\Sigma^+\phi$                                                              | [a] | < 0.11 | L                | 90% |
| Г <sub>23</sub>                                                             | $arepsilon(1690)^0 {\cal K}^+$ , $arepsilon(1690)^0 	o \Sigma^+ {\cal K}^-$ |     | <0.05  | 5                | 90% |
| [a] This branching fraction includes all the decay modes of the final-state |                                                                             |     |        |                  |     |

resonance.

Figure 4. Even with no absolute fraction known, there is sometimes a better way than just putting "seen" for everything.



Figure 5. The 31 branching fractions of the  $\tau$ . Are there other particles that would look good this way?



Figure 6. The distribution of first digits: (a) of meson branching fractions;(b) of errors on those fractions: and (c) of limits on rare or forbidden fractions. These distributions (and many others) obey Benford's first-digit law.

5 2 0.1 0.2 0.5 1 10 (b) Wrap the string Benford's law ..., 0.5, 5, 50, ... ..., 0.2, 2, 20, ... around a circle is satisfied if whose circumference the marks is the length of the populate the string between circumference 1 and 10. uniformly. ..., 0.1, 1, 10, ...

(a) Mark the numbers of a set along a string using a logarithmic scale.

(c) Inverting reflects numbers across 1 on the string and across the vertical diameter on the circle.



(d) Rescaling shifts numbers the same distance on the string and through the same angle on the circle.



(e) A uniform population around the circle remains uniform after the inversion (c) or the rescaling (d).

Figure 7. Proofs of inversion and scale invariance of a distribution that obeys Benford's law are reduced to symmetry operations on a circle. A few Fibonacci numbers are shown for illustration.

[wohIPDG14