





M. Barnett – November 2014

PDG work requires precision and timing!





LAWRENCE BERKELEY NATIONAL LABORATORY

**rrrr** 

BERKELEY



## The PDG Empire





M. Barnett – November 2014



**Collaboration** 



## Particle Data Group collaboration of 206 authors from 24 countries and 140 institutions + 700 consultants in the HEP community



M. Barnett – November 2014 AWRENCE BERKELEY NATIONAL LABORATORY



**Review of Particle Physics** 







**Highlights in Listings** 



7

#### 899 new papers with 3283 new measurements.

330 LHC papers: ATLAS, CMS, and LHCb

Extensive Higgs boson coverage from 138 papers with 258 measurements.

Supersymmetry: 123 papers with major exclusions, many from LHC experiments.

Latest from B-meson physics: 183 papers with 803 measurements, including first observation of Bs  $\to \mu + \mu -$  from LHCb and CMS.

Cosmology reviews updated to include 2013 Planck.

Updated and new results in neutrino mixing on  $\Delta m^2$  and mixing angle measurements, including the first  $\Delta m_{32}^2$  from reactor experiment.

72 new top results since 2012, many from LHC experiments.

Final assignment of 1++ quantum numbers to the X(3872) by LHCb.

Observation of charmonium-like states X(3900) and X(4020) (BESIII and BES3). Observation of bottomonium-like states X(10620) and X(10650) (Belle).

Heavily revised Atomic- Nuclear Properties website.

M. Barnett – November 2014



## 112 reviews (most are revised or new)



#### New reviews on:

- Higgs Boson Physics
- Dark Energy
- Monte Carlo Neutrino Generators
- Resonances

#### Significant update/revision to reviews on:

- Top Quark
- Dynamical Electroweak Symmetry Breaking
- Astrophysical Constants
- Dark Matter
- Big-Bang Nucleosynthesis
- Neutrino Cross Section Measurements
- Accelerator Physics of Colliders
- High-Energy Collider Parameters
- Total Hadronic Cross Sections Plots

M. Barnett – November 2014



**A Highlight** 

Latest plot shows large mixing of neutrinos

Is this now too complex to be useful ?



LAWRENCE BERKELEY NATIONAL LABORATORY



## **Electroweak fit**







**Top Cited** 

.....

BERKELEY

## The Review is the all-time top cited article in High Energy Physics with more than <u>51,000</u> citations (INSPIRE)





# Top Cite. Is this just citation inflation? No.





12







Web Usage

LAWRENCE BERKELEY NATIONAL LABORATORY

.....

BERKELEY LAP

IIII



**PDG Printed Products** 



- Review of Particle Physics 14,000 copies of 1675-page book
- Particle Physics Booklet
   32,000 copies of 328-page booklet
- Pocket Diary for Physicists
   17,000 copies DROPPED due to lack of funding.

M. Barnett – November 2014



PDG Survey on Printed Products



At the 2012 Advisory Committee, we proposed a survey on the future of the Book and Booklet. (The Diary was discontinued due to budget cuts).

An amazing <u>6172</u> readers responded, demonstrating the very high value our community places on PDG products (and 1491 comments).

(We sent out one email; no reminders).

M. Barnett – November 2014





## Comparing surveys in 2000 and in 2014

# THE QUESTION: Is having a copy of the full-sized book (booklet) essential to your work or study?

Yes, it is essential. No, I do not need it. Having the full-size book is useful, but I could live without it or live with a reduced book.

TOTAL Responses: 2450 in 2000 and 6172 in 2014

Reader Comments: 1226 in 2000 and 1491 in 2014

M. Barnett – November 2014



## PDG Survey on Book, Booklet and APP



# 20002014PREFERENCE FOR BOOK (in %)932.1Not needed----26.1Satisfied with reduced book (not asked in 2000)5223.5Like but could do without3918.4I need the book

#### **BOOK BOOKLET PREFERENCE in 2014 (in %)**

| 32.1 🥅 | 18.5 |
|--------|------|
| 26.1   | 29.9 |
| 23.5   | 18.4 |
| 18.4   | 33.2 |

Not needed Satisfied with reduced book(let) Like but could do without I need the book(let)

#### To be discussed later.

M. Barnett – November 2014







**Two thirds of respondents said app was either important or very important. (6172 respondents)** 

**Comments from survey were emphatic:** 

Reduced printed products are dependent on producing replacement app(s).

M. Barnett – November 2014



## PDG App(s)



- Summary Tables
   Basically easy;
   just formatting for readability
- Review articles
   Even easier except for formatting tables
- pdgLive

Not easy. Major programming to connect to database and to present on-the-fly. Proposal to DOE was tabled so far.







21

- 3283 new measurements from 899 new papers (of total 32,000 measurements and 9000 papers).
- 112 reviews with many exciting and new features
- Important new data in areas such as Higgs, SUSY, neutrinos, top quark, B physics, etc.
- **★** Color Figures everywhere



The Web allows us to see what most interest our readers.

The hits (page views) on



almost exactly equal.

Clearly people care about both.

M. Barnett – November 2014



## Astrophysics & Cosmology



## 14 years ago: Very little

#### Now:

(downloads) Astrophysical Constants 5100 Big Bang Cosmology 6300 Cosmological Parameters:

 $H_0$ , Λ, Ω, etc. 11300 Experimental Tests of

Gravitational Theory 3300 Dark Matter 7200 Dark Energy 6800 Cosmic Background Rad. 4800 Big Bang Nucleosynthesis 3500

(downloads)





## **B Meson Section 1984**

Entire section was one page

| 3 <sup>*</sup> , B <sup>°</sup> , B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B <sup>±</sup> 41 CHARGED B(5271, JP- ) I-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SEE ALSO THE LISTING FOR THE B (FOLLOWING THE ENTRY<br>For the Neutral B) for measurements which do not<br>identify the charge state.                                                                                                                                                                                                                                                                                                                                                                                                          |                     | 39 B PARTIAL DECAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41 CHARGED B MASS (MEV)<br>A 6 5270.8 3.0 BEHRENDS 83 CLEO +- D*- PI+ PI+ + (<br>A 5 STATISTICAL (2.5 MEV) AND SYSTEMATICAL (2.0 MEV) ERRORS COMBINED.                                                                                                                                                                                                                                                                                                                                                                                         | .c 4/83∙<br>4/83∙   | P1     B     INTO     ELECTRON     NEUTRINO     HADRONS       P2     B     INTO     MUON     NEUTRINO     HADRONS       P3     B     INTO     E+     E-     ANYTHING       P4     B     INTO     MU-     ANYTHING       P5     B     INTO     MU+     MU-     ANYTHING       P6     B     INTO     J/PSI     ANYTHING       P7     B     INTO     DO     ANYTHING       P8     B     INTO     DROTON     ANYTHING       P9     B     INTO     LAMBDA     ANYTHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DECAY MASSES<br>DECAY MASSES<br>B+ INTO D0BAR PI+<br>2 B+ INTO D*(2010)- PI+ PI+<br>2007+ 140+ 140                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 39 B BRANCHING RATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| B- MODES ARE CHARGE CONJUGATES OF THE ABOVE MODES.<br>41 CHARGED B BRANCHING RATIOS<br>41 B+ INTO DOBAR PI+<br>12 0.042 0.042 BEHRENDS 83 CLEO +- E+ E-, UPSIL(4S<br>12 B+ INTO D*(2010)- PI+ PI+<br>12 6 0.048 0.030 BEHRENDS 83 CLEO +- E+ E-, UPSIL(4S<br>REFERENCES FOR CHARGED B<br>HEHRENDS 83 PRL 50 881 + (ROCH-RUTG+SYRA+VAND+CORN+ITHA+HARY+OSU)<br>14 BO<br>14 MEUTRAL B(5274, JP- ) I-<br>15 SEE ALSO THE LISTING FOR THE B (FOLLOWING THIS ENTRY)<br>FOR MEASUREMENTS WHICH DO NOT IDENTIFY THE CMARGE<br>14 MEUTRAL B MASS (MEY) | -                   | R1         B INTO (ELECTRON MEUTRINO MADROMS<br>R1           R1         A         (0.13)         (0.042)         BE           R1         B         (0.136)         (0.039)         SP           R1         C         0.127         (0.021)         CH           R1         D         0.132         (0.039)         SP           R1         C         0.132         (0.027)         ME           R1         D         0.132         (0.027)         ME           R1         E         (0.116)         (0.027)         ME           R1         B         THE STATISTICAL AND SYSTEMATIC         E           R1         B         B-TO-C         OURK         TRANSIT           R1         A         THE STATISTICAL AND SYSTEMATIC         E           R1         D         STATISTICAL AND SYSTEMATIC         E           R1         D         STATISTICAL AND SYSTEMATIC         E           R1         E         THE STATISTICAL AND SYSTEMATIC         E           R1         ONLY THE EXPERIMENTS AT THE UPSI         R1         C         THE STATISTICAL AND SYSTEMATIC           R1         AVG         0.130         0.013         AVERAGE |
| A 5 5274.2 2.8 BEHRENDS 83 CLEO O D*- PI+ + CC<br>A STATISTICAL (1.9 MEV) AND SYSTEMATICAL (2.0 MEV) ERRORS COMBINED.                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/83*<br>4/83*      | R2 THE B MESON.<br>R3 B INTO (E+ E- ANYTHING)/TOTAL<br>R3 (0.05) OR LESS CL=.90 BI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 42 (80) - (8+) MASS DIFFERENCE (MEV)<br>M A 3.4 3.6 BENRENDS 83 CLEO E+E-, UPSIL(45)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>3/84*<br>3/84* | R4         B INTO (MU+ MU- ANYTHING)/TOTAL           R4         (0.017)OR LESS CL90 CH           R4         0.007 OR LESS CL95 AH           R4         0.007 OR LESS CL95 AH           R4         (0.02) OR LESS CL95 AH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



## **B Meson Section 2014**

CULA DIAED MECONIC



Section is 198 pages.

#### In 2008 was 144 pages

| $B_c^{\pm}$                                                                                                               | Quantu                                                                                                                  | m numbers s                                                                                                                                                        | I(.<br>I,<br>shown are quark-r                                                                                                                                                                                        | J <sup>P</sup> )<br>J, F<br>model                                | = 0(0<br>P need<br>predic                                               | ) <sup>—</sup> )<br>confirmation.<br>tions.                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                           |                                                                                                                         |                                                                                                                                                                    | $B_c^{\pm}$ MAS                                                                                                                                                                                                       | SS                                                               |                                                                         |                                                                                                                                                                                      |
| VALUE (O                                                                                                                  | GeV)                                                                                                                    |                                                                                                                                                                    | DOCUMENT ID                                                                                                                                                                                                           |                                                                  | TECN                                                                    | COMMENT                                                                                                                                                                              |
| 5.2756<br>5.2756<br>5.2756<br>5.300<br>5.4<br>• • • V<br>6.2857                                                           | $\pm 0.0011$<br>$\pm 0.00144$<br>$\pm 0.0013$<br>$\pm 0.0029$<br>$\pm 0.014$<br>$\pm 0.39$<br>Ve do not<br>$\pm 0.0053$ | $\pm 0.00036$<br>$\pm 0.0016$<br>$\pm 0.0025$<br>$\pm 0.005$<br>$\pm 0.13$<br>use the follo<br>$\pm 0.0012$                                                        | AGE<br>1 AAIJ<br>2 AAIJ<br>3 AALTONEN<br>3 ABAZOV<br>4 ABE<br>wing data for avera<br>3 ABULENCIA                                                                                                                      | 13AS<br>12AV<br>08M<br>08T<br>98M<br>oges, f<br>06C              | LHCB<br>LHCB<br>CDF<br>D0<br>CDF<br>its, limi<br>CDF                    | pp at 7, 8 TeV<br>pp at 7 TeV<br>pp at 1.96 TeV<br>pp at 1.96 TeV<br>pp at 1.96 TeV<br>pp at 1.8 TeV<br>ts, etc. • •<br>Repl. by ALTONEN 08M                                         |
| <sup>1</sup> AAI.<br><sup>2</sup> AAI.<br>– N<br><sup>3</sup> Mea<br><sup>4</sup> ABE<br>> 4.<br><sup>5</sup> ACK<br>with | J 13AS us<br>J 12AV us<br>$1(B^+) =$<br>sured usin<br>S 98M obs<br>8 standar<br>C RSTAF<br>an estim                     | es the $B_C^+ \rightarrow$<br>es the $B_C^+ \rightarrow$<br>994.6 $\pm 1.3$<br>ng a fully reco<br>served 20.4 $+$<br>d deviations.<br>F 980 observ<br>ated backgro | $J/\psi D_s^+$ .<br>$J/\psi \pi^+$ mode and<br>$\pm$ 0.6 MeV/c <sup>2</sup> .<br>onstructed decay m<br>$_{5.5}^{6.2}$ events in the <i>E</i> .<br>The mass value is<br>is ed 2 candidate evolution of 0.63 $\pm$ 0.20 | also node o<br>node o<br>$3^+_C \rightarrow$<br>estim<br>ents in | measure<br>f $B_C \rightarrow J/\psi(1)$<br>ated from<br>the $B$<br>is. | s the mass difference $M(B_c^+)$<br>$J/\psi \pi$ .<br>LS) $\ell \nu_{\ell}$ with a significance of<br>m $M(J/\psi(1S) \ell)$ .<br>$\frac{1}{c} \rightarrow J/\psi(1S) \pi^+$ channel |
|                                                                                                                           |                                                                                                                         |                                                                                                                                                                    | B <sup>±</sup> MEAN                                                                                                                                                                                                   | LIFE                                                             |                                                                         |                                                                                                                                                                                      |
|                                                                                                                           | "OUR I<br>data lis<br>the Hea<br>http://w                                                                               | EVALUATION<br>ted below.<br>avy Flavor A<br>www.slac.stan                                                                                                          | B <sup>±</sup> MEAN<br>V" is an average<br>The average and<br>Averaging Group<br>ford.edu/xorg/hfag<br>aunt correlations bu                                                                                           | LIFE<br>usin<br>d resc<br>(HFAC<br>/. The                        | g resca<br>caling v<br>G) and<br>ne avera                               | led values of the<br>were performed by<br>are described at<br>aging/rescaling pro-<br>assurements                                                                                    |

DOCUMENT ID

6 AAL

| Γ <sub>11</sub> | $D^{+}K^{*0}$                                   | < 0.20      |
|-----------------|-------------------------------------------------|-------------|
| Γ <sub>12</sub> | $D^+\overline{K}^{*0}$                          | < 0.16      |
| Γ <sub>13</sub> | $D_{s}^{+}K^{*0}$                               | < 0.28      |
| Γ <sub>14</sub> | $D_{s}^{+}\overline{K}^{*0}$                    | < 0.4       |
| Γ <sub>15</sub> | $D_s^+\phi$                                     | < 0.32      |
| $\Gamma_{16}$   | $K^{+}K^{0}$                                    | < 4.6       |
| Γ <sub>17</sub> | $B^0_s \pi^+ / B(\overline{b} \rightarrow B_s)$ | (2.37 + 0.) |
|                 |                                                 |             |

#### $B_c^+$ BRANCHING RATIOS

| VALUE                                                                                                                                                                                                                                                             | CL%                                                          | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TECN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(5.2^{+2.4}_{-2.1}) \times 10^{-5}$                                                                                                                                                                                                                              |                                                              | <sup>9</sup> ABE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • • • We do not use th                                                                                                                                                                                                                                            | e follow                                                     | ing data for average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s, fits,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $< 1.6 \times 10^{-4}$                                                                                                                                                                                                                                            | 90                                                           | <sup>10</sup> ACKERSTAFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $< 1.9 \times 10^{-4}$                                                                                                                                                                                                                                            | 90                                                           | <sup>11</sup> ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $< 1.2 \times 10^{-4}$                                                                                                                                                                                                                                            | 90                                                           | <sup>12</sup> BARATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| [ $\sigma(B^+) \times B(B^+ \rightarrow by using PDG 98 val)$<br>by using PDG 98 val<br><sup>10</sup> ACKERSTAFF 980<br>6.95 × 10 <sup>-5</sup> at 90%<br><sup>11</sup> ABREU 97E value lis<br>$\tau_{B_c} = 1.4 \text{ ps.}$<br><sup>12</sup> BARATE 97H reports | $J/\psi(15)$<br>lues of E<br>reports<br>CL. We<br>sted is fo | $(5)$ $(K^+)$ ] = 0.132 $^+0.$<br>$(5)$ $(K^+)$ ] = 0.132 $^+0.$<br>$(5)$ $(K^+)$ ] = 0.132 $^+0.$<br>$(5)$ $(K^+)$ = 0.132 $^+0.$<br>$(K^+)$ = 0.132 | $041 \\ 037 (s) \\ B^+ - 2 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 037 \\ 03$ | $(a_{2}) \pm J/(a_{2}) \times J/(a_{$ |
| at 00%CL_We rescal                                                                                                                                                                                                                                                | la to ou                                                     | r PDC 96 values of B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( hh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

candidate event is found, compared to all the known back which gives  $m_{B_c}=5.96\substack{+0.25\\-0.19}$  GeV and  $\tau_{B_c}=1.77\pm0.12$ 

#### $\Gamma(J/\psi(1S)\pi^+)/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)$

| VALUE                  | CL%           | DOCUMENT ID                       |              | TECN  |
|------------------------|---------------|-----------------------------------|--------------|-------|
| seen                   |               | AALTONEN                          | 13           | CDF   |
| seen                   |               | <sup>13</sup> AALJ                | 12AV         | LHC   |
| seen                   |               | AALTONEN                          | 08M          | CDF   |
| seen                   |               | ABAZOV                            | 08T          | DO    |
| • • • We do not u      | se the follow | ing data for average              | es, fits,    | limit |
| $<2.4 \times 10^{-4}$  | 90            | <sup>14</sup> ACKERSTAFI          | 980          | OPA   |
| $<3.4 \times 10^{-4}$  | 90            | <sup>15</sup> ABREU               | 97E          | DLP   |
| $< 8.2 \times 10^{-5}$ | 90            | <sup>16</sup> BARATE              | 97H          | ALE   |
| $<2.0 \times 10^{-5}$  | 95            | <sup>17</sup> ABE                 | 96R          | CDF   |
| 13 AAIJ 12AV repo      | rts a measur  | ement of $B(B_c^+ \rightarrow 0)$ | $J/\psi \pi$ | +)/B  |

 $(0.68 \pm 0.10 \pm 0.03 \pm 0.05)\%$  at  $p_T(B) > 4$  GeV and 2.5 14 ACKERSTAEE 980 reports  $B(Z \rightarrow BX)/B(Z \rightarrow g_R)X$ 

| 2  |                           |
|----|---------------------------|
|    | VALUE (GeV)               |
|    | 6.2756 ±0.0011            |
|    | 6.27628±0.0014            |
|    | 6.2737 ±0.0013            |
|    | 6.2756 ±0.0029            |
|    | 6.300 ±0.014              |
| )  | 6.4 ±0.39                 |
|    | • • • We do not           |
| 14 | 6.2857 ±0.0053            |
|    | 6.32 ±0.06                |
|    | <sup>1</sup> AAIJ 13AS us |
|    | 2                         |

VALUE (10-12 s)

 $0.509 \pm 0.008 \pm 0.012$ 

0.452±0.033 OUR EVALUATION 0.500±0.013 OUR AVERAGE

Г

TONA

LAWRENCE BERKELEY NATIONAL LABORATORY

TECN COMMENT

14G LHCB pp at 8 TeV



## Amazing Diversity of Topics Interest Our Community



26

| 1 | Higgs boson                                      | RELET LA |
|---|--------------------------------------------------|----------|
| - | Passage of particles through matter              |          |
|   | Plots of cross sections and related quantit      | ties     |
|   | Neutrino mass, mixing, and oscillations          |          |
| - | Electroweak model and constraints on new physics |          |
| - | Particle detectors at accelerators               |          |
| - | Cosmic rays                                      |          |
|   | Statistics Downloads of                          |          |
|   | Quark model PDG reviews in                       |          |
|   | Cosmological parameters 2014 edition             |          |
|   | Physical constants                               |          |
|   | Kinematics                                       |          |
|   | CKM quark-mixing matrix                          |          |
|   | Cross-section formulae                           |          |
|   | Dark matter                                      |          |
|   | Dark energy                                      |          |
|   | Top quark                                        |          |
|   | Big bang cosmology Downloads                     |          |
| 0 |                                                  | 14       |
|   | LAWRENCE REPKELEY NATIONAL LABORATORY            |          |



## **Workload Trends**









| Papers            | 2008 | 2010 | 2012 | <u>2014</u> |
|-------------------|------|------|------|-------------|
| Supersymmetry     | 33   | 34   | 68   | 123         |
| Axions            | 18   | 21   | 21   | 36          |
| Higgs             | 12   | 34   | 51   | 138         |
| W', Z'            | 18   | 16   | 36   | 50          |
| Compositeness     | 6    | 5    | 12   | 17          |
| Extra dimensions  | 11   | 10   | 17   | 32          |
| Other searches    | 4    | 12   | 37   | 94          |
| Free q, monopoles | 1    | 3    | 2    | 6           |
|                   | 103  | 135  | 244  | 496         |

**Searches** 

M. Barnett – November 2014



132/120/183 B papers in 2010/2012/2014 editions



M. Barnett – November 2014 AWRENCE BERKELEY NATIONAL LABORATORY







LAWRENCE BERKELEY NATIONAL LABORATORY

M. Barnett – November 2014

## **New Papers in RPP-2014**

particle data group

|                                                         |      |      |      |                                                         |             | BERKEL | LEY LAB |
|---------------------------------------------------------|------|------|------|---------------------------------------------------------|-------------|--------|---------|
| Papers                                                  | 2010 | 2012 | 2014 | <b>Measurements</b>                                     | <u>2008</u> | 2010   | 2014    |
| W Boson                                                 | 7    | 8    | 8    | W Boson                                                 | 18          | 17     | 19      |
| Z Boson                                                 | 7    | 4    | 6    | Z Boson                                                 | 16          | 7      | 6       |
| τ Lepton                                                | 11   | 7    | 6    | τ lepton                                                | 49          | 40     | 49      |
| Neutrinos and mixing                                    | 25   | 41   | 40   | Neutrinos and mixing                                    | 48          | 114    | 104     |
| Quarks (u,d,c,s,b)                                      | 17   | 20   | 24   | Quarks (u,d,c,s,b)                                      | 33          | 51     | 27      |
| Top quark                                               | 35   | 51   | 51   | Top quark                                               | 47          | 63     | 72      |
| b', t' quarks                                           | 1    | 5    | 15   | b', t' quarks                                           | 1           | 6      | 17      |
| γ, e, μ, π, η                                           | 20   | 15   | 11   | γ, e, μ, π, η                                           | 40          | 23     | 11      |
| K mesons                                                | 23   | 23   | 9    | K mesons                                                | 47          | 61     | 13      |
| D and D <sub>s</sub> mesons                             | 44   | 34   | 31   | D and D <sub>s</sub> mesons                             | 236         | 207    | 149     |
| B and B <sub>s</sub> mesons                             | 132  | 120  | 183  | B and B <sub>s</sub> mesons                             | 714         | 555    | 803     |
| $\psi$ , $\eta_{c}$ , $\chi_{c}$ , $\chi_{b}$ , upsilon | 72   | 65   | 65   | $\psi$ , $\eta_{C}$ , $\chi_{C}$ , $\chi_{b}$ , upsilon | 329         | 323    | 294     |
| Other unstable mesons                                   | 58   | 106  | 103  | Other unstable mesons                                   | 369         | 568    | 470     |
| Baryons                                                 | 23   | 38   | 38   | Baryons                                                 | 88          | 667    | 714     |
| Supersymmetry                                           | 34   | 68   | 123  | Supersymmetry                                           | 37          | 96     | 194     |
| Axions                                                  | 21   | 21   | 36   | Axions                                                  | 22          | 22     | 40      |
| Higgs                                                   | 34   | 51   | 138  | Higgs                                                   | 45          | 68     | 258     |
| W', Z'                                                  | 16   | 36   | 50   | W', Z'                                                  | 29          | 60     | 66      |
| Compositeness                                           | 5    | 12   | 17   | Compositeness                                           | 5           | 13     | 23      |
| Extra dimensions                                        | 10   | 17   | 32   | Extra dimensions                                        | 14          | 19     | 42      |
| Other searches                                          | 12   | 37   | 94   | Other searches                                          | 22          | 65     | 279     |
| Free q, monopoles                                       | 3    | 2    | 6    | Free q, monopoles                                       | 4           | 2      | 7       |
| TOTAL                                                   | 553  | 644  | 899  | TOTAL                                                   | 2167        | 2658   | 3236    |

M. Barnett – November 2014

LAWRENCE BERKELEY NATIONAL LABORATORY

.....

lui)







14,000 RPP books requested

Impact

- 10 million hits/year on website (>180 countries)
- 51,000 citations of RPP
  - Most cited publication in HEP



**Confidence Levels** 

## of Averages



Each point is one average.

Peak at left due to conflicting measurements.



M. Barnett – November 2014





# Research involvement has always been a keystone to the success (and quality) of PDG work.

#### LBNL Physicists (ATLAS, Daya Bay, Theory):

Juerg Beringer Dan Dywer Cheng-Ju Lin Simone Pagan Griso Weiming Yao Michael Barnett

## Editor Physicist

Piotr Zyla

M. Barnett – November 2014





#### PDG leadership group at LBNL coordinates the entire effort

- Produces and publishes the Review,
- Handles all of the final checking, editing,
- Major contributor to the content,
- Chooses the authors and the content,
- Maintains the schedule
- Coordinates the input of 700 consultants from HEP community.

#### **Essential for**

- High-quality
- Timely publication

Except for the PDG staff at LBNL, all work for PDG is carried out by volunteers who spend only a few percent of their time on PDG work

M. Barnett – November 2014







## **Five publishers bid on RPP and Booklet in past:**

Physics Letters B (Elsevier)

Physical Review D (AIP)

Journal of Physics G (IoP)

**European Physical Journal C (Springer)** 

Chinese Physics C (Chinese Phys. Soc.)

This year, one publisher bid on RPP and Booklet

M. Barnett – November 2014





Funding from DOE + Japan (Japan 6% in FY15)

NSF grant (12% of budget) ended last year.

Due to Congress' continuing resolution, the PDG budget for this year (FY15) has been cut by 11%.

**96%** of the PDG budget is salary.

In FY15, salary alone is more than our funding during CR.

- We no longer pay any portion of retiree contributions.
- We replaced our full-time admin with a 10% admin (trying to hire a 1 FTE programmer to replace CD help)
- All printed products are not currently in our budget.

This situation is not sustainable.

M. Barnett – November 2014





# Vital roles of CERN, Japan, INSPIRE

M. Barnett – November 2014





## **50+ year collaboration**

Administration for CERN funding (Michael Doser).

Pays publisher directly for their copies.

Oversees support for the Meson Team (space, travel), which is mostly non-CERN people who meet at CERN.

CERN

Mirror website maintained.

14 (of 206) CERN members (as individuals): Doser, Basaglia, Ceccucci, Gurtu, Hoecker, Holtkamp, Kado, Moortgat, Roesler, Salam, Sauli, Silari, Skands, and Zimmerman.

M. Barnett – November 2014





#### 28 Years of Japan-US Collaboration

- The PDG Japan-US Collaboration is a very successful and essential effort.
- The quality of the Review of Particle Physics is very much enhanced by the participation of Japanese physicists.
- 4400 products mailed to Japanese physicists (which they pay for)
- Mirror website maintained.
- In charge of major sections.
- Administration for Japanese funding (Ken-ichi Hikasa); oversees support for Japanese members (travel).







## **Reviews and Data Sections**

- Neutrinos
- CKM Quark Mixing
- Top quark
- Higgs bosons
- Supersymmetry
- Compositeness of quarks and leptons
- Axions
- Heavy bosons (W', Z', etc.)
- Even more exotic particles.







#### Leadership (past and present)

- Dr. Kasuke Takahashi
- Prof. Yoshio Oyanagi
- Prof. Ken-ichi Hikasa (current leader)

#### **Eleven Japanese physicists**

- Dr. Kaoru Hagiwara (KEK)
- Dr. Shoji Hashimoto (KEK)
- Prof. Yoshinari Hayato (Tokyo University)
- Prof. Ken-ichi Hikasa (Tohoku University)
- Prof. Hitoshi Murayama (WPI Tokyo)
- Dr. Kenzo Nakamura (KEK)
- Dr. Yoshihide Sakai (KEK)
- Prof. Takayuki Sumiyoshi (Tokyo Metropolitan U.)
- Prof. Fuminobu Takahashi (Tohoku University)
- Prof. Masaharu Tanabashi (Nagoya University)
- Dr. Akira Yamamoto (KEK)

M. Barnett – November 2014



Many years collaboration (> 20)

Coordination with SLAC Library group. SPIRES  $\rightarrow$  Now INSPIRE (and CERN)

Yields our ability to link to the papers from which the measurements come.

Many discussions of improved coverage for the HEP community.

M. Barnett – November 2014

LAWRENCE BERKELEY NATIONAL LABORATORY

BERKELEY

## **End of Introduction**

#### Slow boat from China -- Really





# Procedures

# The process of producing the *Review of Particle Physics*

M. Barnett – November 2014









## Literature Search

**Procedures** 

Complete Literature Search by two people of 20 journals (600 papers per edition predominantly from PL, PRL, PR, JHEP, and EPJ)

**Enter Literature search results in database** 

Distribute assignments of papers to Encoders and Overseers

M. Barnett – November 2014





## **Encoding**

Each paper read carefully by two people: by encoder and by overseer

**Procedures** 

**Encoder and Overseer initiate data entry** 

Encoding data entered into database: Sections have very different formats

Create new sections, delete sections, reorganize/combine sections

M. Barnett – November 2014







## Write/edit Reviews describing content of and/or problems in a given section

**Procedures** 

Referee each review and note (3-5 referees)

Place reviews into system so can produce book and web versions

M. Barnett – November 2014





51

## Final processing

**Procedures** 

Edit all sections for consistency, errata, quality, etc.

Request Verification of every entry from each experiment

**Enter corrections/changes from Verifications** 

Calculate Averages, Fits and Best Limits. Many of these are unique by section

**Prepare Summary Table** 

Prepare Conservation Laws table (with impact on Listings and Summary Table)

M. Barnett – November 2014





## **Production**

**Procedures** 

Post Listings and Reviews on web

Produce 1675-page book of Summary Tables, Listings, Reviews

Produce web versions of everything in book Including pdgLive

Produce 328-page Booklet with Summary Tables and abridged version of reviews

M. Barnett – November 2014





# **Quality Assurance**

# The HEP Community and many others depend on us for accuracy and integrity

M. Barnett – November 2014





- All reviews have 3-5 referees.
- Every item of data that is entered is checked by the experiments (700 people help).
- PDG Advisory Committee reviews all PDG operations

We strive to only report what is a fair consensus of the community. E.g.- For the growing B sections, the three encoders are from Belle, LHCb, and Tevatron.

We invite comments from the collaborations on many sections.

We organize mini-workshops when we need to consider expanded and improved coverage of a section (such as D mesons, B mesons, neutrinos, tau leptons, CKM, extra dimensions, ....)

M. Barnett – November 2014



| Deborah Harris – Chair | (Fermilab)    |
|------------------------|---------------|
| James Olsen            | (Princeton)   |
| Junichi Tanaka         | (U. of Tokyo) |
| Tancredi Carli         | (CERN)        |
| Anze Slosar            | (BNL)         |
| Yasunori Nomura        | (UC Berkeley  |

rkeley)

M. Barnett – November 2014





Peter Zerwas Persis Drell Taka Kondo **Dieter Schlatter** Michael Turner Paul Langacker Mark Wise Michel della Negra Jonathan Dorfan **Stephen Ellis** Ann Kernan Chris Quigg Lincoln Wolfenstein **Mike Whalley** Jonathan Rosner Gary Feldman **Rudiger Voss** Fred Gilman Hiroaki Aihara Gustaaf Brooijamns

Patrick Janot Gilad Perez

M. Barnett – November 2014



**Vital PDG Workshops** 



## Workshops lead to improved coverage

- Searches
- Neutrino
- CKM
- D Meson
- τ lepton
- Extra-dimensions
- Statistics



M. Barnett – November 2014



Collaboration with Working Groups



**Coordination with working groups at** 

## LHC, Tevatron, B-factories, LEP on:

- Higgs
- Electroweak fits,
- B lifetimes, B mixing,
- V<sub>cb</sub> and V<sub>ub</sub>
- top quark mass, etc.

**PDG role in CKM** workshops, Statistics workshops, etc.



TWiki > LHCPhysics Web > HiggsCombination (06 Aug 2014, EilamGross)

## LHC Higgs Combination Group (LHC-HCG)

#### Charge

The working group has been charged to produce a combined Higgs result from LHC (ATLAS and CMS) Higgs analyses.

#### Composition

| role                            | ATLAS                  | CMS                      |
|---------------------------------|------------------------|--------------------------|
| Conveners & Contact             | Eilam Gross            | Marco Pieri              |
| Higgs X-section representatives | Reisaburo Tanaka (LAL) | Chiara Mariotti (Torino) |

Other members are: ATLAS and CMS spokespeople and physics coordinators and participating experts as and when needed.

M. Barnett – November 2014

LAWRENCE BERKELEY NATIONAL LABORATORY

**cccc** 

BERKELEY

PI

Attach

Edit

