Issues pertaining to Neutrino encodings

Maury Goodman, Argonne Lab Cheng-Ju Lin, Lawrence Berkeley Lab

Reminder

- Since the 2004 workshop, the "Neutrino Mixing" encoding assumes the three-neutrino paradigm (as do all papers that we encode without saying so.)
- If this turns out not to be the full story, all the encoding entries are either wrong, meaningless or just approximations
- As with any quantity in the PDG, multiple measurements are a test of the paradigm.
- There is still an "Other neutrino mixing" section to deal with measurements conceivably related to the alleged LSND signal.

What we encode

3ν paradigm variables:

- $\Delta m_{12}^2 \Delta m_{21}^2 \Delta m_{13}^2$ $\Delta m_{23}^2 \Delta m_{32}^2 \Delta m_{31}^2$
- $\sin^2 2\theta_{12}$ $\sin^2 2\theta_{23}$ $\sin^2 2\theta_{13}$
- δ_{CP}

Not (yet) encoded:

overall mass scale Majorana phases

Sign of Δm_{32}^2

A problem that went away

 The CHOOZ limit, and now the reactor measurements, depend on Δm^2_{32} . In previous editions we had to change the limit on θ_{13} as the best value of Δm_{32}^2 fluctuated. These fluctuations are now smaller and no longer important.

Conventions for Δm^2

Two problems:

- 1. We chose to encode $|\Delta m_{32}^2| \sim |\Delta m_{31}^2|$ but now $\delta(\Delta m_{32}^2) \sim |\Delta m_{21}^2|$
- 2. We encode $|\Delta m^2_{32}|$ but experiments measure Δm^2_{ee} and Δm^2_{uu} and

 $\Delta m_{ee}^2 = \Delta m_{\mu\mu}^2 \pm \Delta m_{21}^2 (\cos 2\theta_{12} - \cos \delta \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$

- ₱ In the listings we say what each measurement is
- \otimes When we know the hierarchy \rightarrow problem goes away.

Conventions for

• We originally chose to encode $\sin^2 2\theta_{ij}$ This is ok for θ_{12} and θ_{13} , but not now for θ_{23} . In the 2 ν approximation (which is surprisingly good):

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \propto \sin^2 2\theta_{23}$$

[not sensitive to sign(θ_{23} -45°)]

But for v_e appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) \propto \sin^{2}\theta_{23} \sin^{2}2\theta_{13}$$

This is sensitive to whether θ_{23} is > or $< 45^{\circ}$ (called the octant).

A change for 2016

 We are in the process of switching from $\sin^2(2q_{ii})$ to $\sin^2(q_{ii})$ for 2016. This will involve re-encoding a small number of the θ_{23} entries and 3 new nodes.

$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$
$\theta_{12}/^{\circ}$	$33.48^{+0.77}_{-0.74}$
$\sin^2\theta_{23}$	$[0.451^{+0.001}_{-0.001}] \oplus 0.577^{+0.027}_{-0.038}$
$\theta_{23}/^{\circ}$	$\left[42.2^{+0.1}_{-0.1}\right] \oplus 49.4^{+1.6}_{-2.0}$
$\sin^2 \theta_{13}$	$0.0219^{+0.0010}_{-0.0011}$
$\theta_{13}/^{\circ}$	$8.52^{+0.20}_{-0.21}$
$\delta_{\mathrm{CP}}/^{\circ}$	251^{+67}_{-59}
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.50^{+0.19}_{-0.17}$
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2} \text{ (N)}$	$[+2.458^{+0.002}_{-0.002}]$
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2}$ (I)	$-2.448^{+0.047}_{-0.047}$

Global fit example (NuFIT 1.3)

Conventions for δ_{CP}

- New node in 2014 edition
- Choices: 0 to 2π , $-\pi$ to π , 0 to 360, -180 to 180
- All four are being used
- Polled several "experts", nobody cared