Using the HFAG fit for τs

Encoder: Ken Hayes

Overseer: Klaus Mönig

LBNL resp.: Juerg Beringer

Present situation

- The τ-branching ratios are obtained from a constrained fit to all data
- All decay modes are broken down into basis modes which are constrained to add up to 1
- At the moment we use the standard PDG fit with the standard algorithm for error scaling
- Correlations inside the measurements of a given publication can be taken into account if the publication contains the correlation matrix
- At present we miss decay modes with a sum of 0.08% in the fit
- The best measured decay modes have a relative error of 0.2%
- An update of the fit is desirable, but not absolutely necessary

A note on error scaling

- The fit scales errors of several modes with a CL of 10-15%
- Without scaling the final χ^2 /ndf is 129/109 (prob=9%)
- We know there is a problem in the $\pi\pi K$, πKK , KKK modes which contribute a χ^2 of ~40 for 14 measurements
- If one subtracts the excess χ^2 (~25) the final χ^2 is perfect
- This indicates that no scaling apart from these modes is needed, confirmed by the individual ideograms for the other modes which are scaled

The HFAG fit

- The Heavy Flavour Averaging Group also performs a full fit to the τ branching ratios
- Their fit is also able to take common systematics between different publications into account
- The fit contains no automatic error scaling but the scaling for the problematic 3h modes has been introduced
- If error scaling and common systematics are switch off in the PDG and the HFAG fit both fits agree perfectly

Proposal to use HFAG fit

We propose to use the HFAG fit for the PDG averages

- External fits are used successfully already in the PDG, e.g. the Z properties
- The HFAG fit is supported by the chair of the HFAG τ-group,
 A. Lusiani, who has a permanent position in Pisa
- The group is willing to provide fits to us on a regular basis using exactly the data we use in our listings
- Their fit should give more reliable results due to the better treatment of common systematics
- Not to duplicate the work we should discuss the inclusion of more basic modes only after we decided which fit to use