adron Collider Physics Symposium 2011

The Hadron Collider Physics Symposium 2011 will be hosted by LPNHE / University of Paris VI & VII, in Paris, France. The 22nd conference in this series, this meeting will showcase the latest results from th

Run Number: 201006, Event Number: 55422459

Date: 2012-04-09 14:07:47 UTC

CP2011 of for New Phenomena in the Dijet Mass Distribution using 1.0 fb⁻¹

pp Collisions at $\sqrt{s} = 8$ TeV collected by the ATLAS Detector.

lio Picazio

4 - 18, 2011

with many contributions from A. Davidson, E. Kajomovitz and G. Salam

Ashkenazi^S, Or Boelaent⁵, Groudalakis², G. Doglioni⁸, E. Ertel⁴, O. Endner⁴, uescini⁸, T. Huelsing⁴, C.J. Meyer³, F. Rühr¹, A. Picazio⁸, M. Shupe¹, T. Sumida⁹

The Search - di-Boson Analysis

Searching for heavy resonances decaying in WZ, ZZ and WW

from E. Kajomovitz talk

from E. Kajomovitz talk

from E. Kajomovitz talk

from E. Kajomovitz talk

Inside our detector

Where do we go from here?

- Parton level isn't well defined or observable
- ► Hadron level is the only well-defined ⇒ OBSERVABLES
- Detector causes even more problems

At the end of the day we still want to measure hard processes involving jet-like hadron production

In our case we are interested in jets originated by the hadronic decay of the vector bosons

From di-jet to di-Boson topology

- Vector bosons have masses of O(100 GeV)
- "New physics" particles expected with masses of O(TeV) - I to 3 TeV in 2012

In this kind of final state the two bosons will have a momentum of O(TeV)

1.3

1,4

1,5

eam axis

B15

A16_ - 1

⁶B14

A15

The "idea" - Jet Substructure

LAr forward (FCal)

Boson Jet vs QCD Jet

What do we expect?

Boson Jet

- 2 regions with high energy density
- Each of the quarks carries comparable fraction of the boson momentum in LF
- Mass of the jet close to the boson mass

QCD Jet

- Narrow region with high energy density
- Most of the energy of the jet is contained in this region
- Mass of the jet comes from the spread of energy of the originating parton

How does the technique work?

Using Cambridge/Aachen Jet algorithm

Recombines closest pair of objects in the event up to R (distance parameter)
Fat-Jets are used (R=1.2), in order to keep the analysis scale invariant

When finding a jet that passes a p_T cut (transverse momentum)

- Clustering can be undone one step at the a time
- Reverse clustering until a large drop in mass is observed
- Check this splitting is not too asymmetric
- Recluster remaining constituents with smaller R

* the technique has been applied also to Higgs boson tagging

From G. Salam talk

Cluster event, C/A, R=1.2

From G. Salam talk

Fill it in, \rightarrow show jets more clearly

Sis

From G. Salam talk

Consider hardest jet, m = 150 GeV

sis

From G. Salam talk

sis

From G. Salam talk

From G. Salam talk

check: $y_{12} \simeq \frac{p_{t2}}{p_{t1}} \simeq 0.7 \rightarrow \text{OK} + 2 \text{ b-tags}$ (anti-QCD)

Sis

From G. Salam talk

 $R_{filt} = 0.3$

Sis

From G. Salam talk

 $R_{filt} = 0.3$: take 3 hardest, $\mathbf{m} = 117 \text{ GeV}$

From G. Salam talk

Results:

 $R_{filt} = 0.3$: take 3 hardest, m = 117 GeV

Sis

From G. Salam talk

 $R_{filt} = 0.3$: take 3 hardest, $\mathbf{m} = 117 \text{ GeV}$

H boson test mass 115 GeV

Results:

- Size of the initial jet reduces to accomodate the hard substructure
- Jet mass resolution improved
- Reclustered jet less affected by pile-up dependence

New observables to discriminate Signal and Background

What does reclustering do?

- Redefines the jet shape and size
- Investigating the jet substructure, provides new observables
 - \rightarrow Momentum balance ($\sqrt{y_f}$)
 - ➡ NSubjettines
 - ightarrow ...and many others

Jet Mass

- For boson jets jet mass peaks at the nominal boson mass
- QCD mostly falling mass distribution

Boson Tagging

Momentum balance

- For boson jets the subjets have comparable momenta at the stopping point
- For QCD jets one of the subjets will have most of the momentum

Hadronic Activity

 Increased hadronic activity in QCD jets

Performance of Jet Mass

Jet Mass

- For boson jets jet mass peaks at the nominal boson mass
- QCD mostly falling mass distribution

→ For QCD jets one of the subjets will have most of the momentum μ_{12}

Performance of Jet Hadronic Activity

After applying the two previous selections most of the background is QCD jets with a hard gluon splitting

- ➡ Expect hadronic activity proportional to parton charge (3 gluon, 4/3 quark)
- ➡ Use #Trk as a proxy for hadronic activity

Background Parametrization - Data drive approach

QCD Background not completely understood. Data driven approach much more reliable

BG described with 3-parameter function:

- $\frac{dN}{dx} = C(1-x)^{p_2+p_9p_3}x^{p_3}$
- Classic dijet function with $p_4 = 0$

Shown in 2011 to be sufficient with greater statistics

Backgroeund fit performed with Bayesian analysis with a Poisson likelihood

 Flat prior with exponential tails probability distributions for p1, p2, p3

For counting experiment the likelihood is:

$$\mathcal{L}(\mathbf{n}_{\text{obs}}|\mathbf{n}_{\text{exp}}) = \prod_{i} P_{\text{pois}}(n_{\text{exp}}^{i}, n_{\text{obs}}^{i})$$

For counting experiment the likelihood is:

$$\mathcal{L}(\mathbf{n}_{\text{obs}}|\mathbf{n}_{\text{exp}}) = \prod_{i} P_{\text{pois}}(n_{\text{exp}}^{i}, n_{\text{obs}}^{i})$$

$$P_{\text{pois}}(\lambda, n) = \frac{\lambda^n e^{-\lambda}}{n!} \qquad \begin{array}{l} \textbf{n} : \textbf{n}_{\text{observed}} \text{ counts} \\ \boldsymbol{\lambda} : \textbf{n}_{\text{expected}} \end{array}$$

In our case the number of counts are the entries in each bin of the observed histogram

For counting experiment the likelihood is: $\mathcal{L}(\mathbf{n}_{obs}|\mathbf{n}_{exp}) = \prod_{i} P_{pois}(n_{exp}^{i}, n_{obs}^{i})$ $P_{pois}(\lambda, n) = \frac{\lambda^{n}e^{-\lambda}}{n!}$ $n: n_{observed}$ counts $\lambda: n_{exp} = n_{bkg} + \mu n_{sig}$ $n_{exp} = f(\mu, B_{NP}, S_{NP})$ \Rightarrow $B_{NP}: Background parameters - pl, p2, p3$ \Rightarrow $S_{NP}: Signal parameters, included systematics$

For counting experiment the likelihood is:

$$\mathcal{L}(\mathbf{n}_{\text{obs}}|\mathbf{n}_{\text{exp}}) = \prod_{i} P_{\text{pois}}(n_{\text{exp}}^{i}, n_{\text{obs}}^{i})$$

In our case the number of counts are the entries in each bin of the observed histogram

 $n_{exp} = n_{bkg} + \mu n_{sig}$

 $P_{\text{pois}}(\lambda, n) = \frac{\lambda^n e^{-\lambda}}{n!}$

 $n_{exp} = f(\mu, B_{NP}, S_{NP})$

 $\lambda:n_{\text{expected}}$

n:nobserved counts

B_{NP}: Background parameters - pl, p2, p3
 S_{NP}: Signal parameters, included systematics

Full set of parameters with their probability density functions

Param.	pdf	Meaning
μ	flat	Signal strength relative to SSM
p_1, p_2, p_3	flat	Background parameters
SL	$G(S_{\rm L} 1, 0.028)$	Integrated luminosity SF
α	$G(\alpha 1, 0.02)$	Jet $p_{\rm T}(m_{jj})$ scale
σ_E	$G(\sigma_E 0, 0.0t \times \sqrt{1.2^2 - 1})$	Jet $p_{\rm T}$ resolution (additional smearing)
α_m	$G(\alpha_m 1, 0.03)$	Jet mass scale
σ_m	$G(\sigma_m 0, 0.075 \times \sqrt{1.2^2 - 1})$	Jet mass resolution (additional smearing)
α_y	$G(\alpha_y 1, 0.02)$	Jet momentum balance ($\sqrt{y_f}$) scale
σ_y	$G(\sigma_y 0, 0.16 \times \sqrt{1.2^2 - 1})$	Momentum balance resolution (additional smearing)
S _t	$G_{\rm t}(S_{\rm t} 0.89, 0.095, 1.07)$	Track multiplicity SF
S _{ps}	<i>G</i> (1.0, 0.05)	Parton Showering uncertainty SF

 $\mathcal{L}(\mathbf{n}_{\text{obs}}|\mathbf{n}_{\text{exp}}) = \prod P_{\text{pois}}(n_{\text{exp}}^{i}, n_{\text{obs}}^{i})$ For counting experiment the likelihood is: In our case the number of counts are n: nobserved counts $P_{\text{pois}}(\lambda, n) = \frac{\lambda^n e^{-\lambda}}{n!}$ the entries in each bin of the observed $\lambda:n_{\text{expected}}$ histogram BNP: Background parameters - pl, p2, p3 $n_{exp} = f(\mu, B_{NP}, S_{NP})$ $n_{exp} = n_{bkg} + \mu n_{sig}$ ➡ S_{NP} : Signal parameters, included systematics Param. pdf Meaning Signal strength relative to SSM flat μ **Background parameters** flat p_1, p_2, p_3 $G(S_{\rm L} | 1, 0.028)$ Integrated luminosity SF $S_{\rm L}$ $G(\alpha | 1, 0.02)$ Jet $p_{\rm T}(m_{ii})$ scale α $G(\sigma_F|0, 0.0t \times \sqrt{1.2^2 - 1})$ Jet $p_{\rm T}$ resolution (additional smearing) Full set of parameters with their σ_E $G(\alpha_m | 1, 0.03)$ Jet mass scale α_m probability density functions $G(\sigma_m|0, 0.075 \times \sqrt{1.2^2 - 1})$ Jet mass resolution (additional smearing) σ_m $G(\alpha_{y} | 1, 0.02)$ Jet momentum balance ($\sqrt{y_f}$) scale α_y $G(\sigma_{\mu}|0, 0.16 \times \sqrt{1.2^2 - 1})$ Momentum balance resolution (additional smearing) σ_u $G_{\rm t}(S_{\rm t}|0.89, 0.095, 1.07)$ S_{t} Track multiplicity SF

S <u>ps</u>

G(1.0, 0.05)

n_{sig} = µn_{SSM} assuming model hypothesis (MH) signal strength

Parton Showering uncertainty SF

Full set of	parameters	with their
probabil	ity density f	unctions

Param.	pdf	Meaning
μ	flat	Signal strength relative to SSM
p_1, p_2, p_3	flat	Background parameters
$S_{\rm L}$	$G(S_{\rm L} 1, 0.028)$	Integrated luminosity SF
α	$G(\alpha 1, 0.02)$	Jet $p_{\rm T}(m_{jj})$ scale
σ_E	$G(\sigma_E 0, 0.0t \times \sqrt{1.2^2 - 1})$	Jet $p_{\rm T}$ resolution (additional smearing)
α_m	$G(\alpha_m 1, 0.03)$	Jet mass scale
σ_m	$G(\sigma_m 0, 0.075 \times \sqrt{1.2^2 - 1})$	Jet mass resolution (additional smearing)
α_y	$G(\alpha_y 1, 0.02)$	Jet momentum balance ($\sqrt{y_f}$) scale
σ_y	$G(\sigma_y 0, 0.16 \times \sqrt{1.2^2 - 1})$	Momentum balance resolution (additional smearing)
S_{t}	$G_{\rm t}(S_{\rm t} 0.89, 0.095, 1.07)$	Track multiplicity SF
$S_{\rm ps}$	<i>G</i> (1.0, 0.05)	Parton Showering uncertainty SF

	Param.	pdf	Meaning
	μ	flat	Signal strength relative to SSM
	p_1, p_2, p_3	flat	Background parameters
	SL	$G(S_{\rm L} 1, 0.028)$	Integrated luminosity SF
	α	$G(\alpha 1, 0.02)$	Jet $p_{\mathrm{T}}(m_{jj})$ scale
Full set of parameters with their	σ_E	$G(\sigma_E 0, 0.0t \times \sqrt{1.2^2 - 1})$	Jet $p_{\rm T}$ resolution (additional smearing)
probability density functions	α_m	$G(\alpha_m 1, 0.03)$	Jet mass scale
	σ_m	$G(\sigma_m 0, 0.075 \times \sqrt{1.2^2 - 1})$	Jet mass resolution (additional smearing)
	α_y	$G(\alpha_y 1, 0.02)$	Jet momentum balance ($\sqrt{y_f}$) scale
	σ_y	$G(\sigma_y 0, 0.16 \times \sqrt{1.2^2 - 1})$	Momentum balance resolution (additional smearing)
	St	$G_{\rm t}(S_{\rm t} 0.89, 0.095, 1.07)$	Track multiplicity SF
	S_{ps}	G(1.0, 0.05)	Parton Showering uncertainty SF

Applying the Bayes theorem

 $P_{post}(T) = \mathcal{L}(n_{obs}|T)P_{prior}(T)$

The systematics are included in the priors for the Nuisance Parameters

 $T = \{\mu, B_{NP}, S_{NP}\}$

	Param.	pdf	Meaning
	μ	flat	Signal strength relative to SSM
	p_1, p_2, p_3	flat	Background parameters
	SL	$G(S_{\rm L} 1, 0.028)$	Integrated luminosity SF
	α	$G(\alpha 1, 0.02)$	Jet $p_{\rm T}(m_{jj})$ scale
Full set of parameters with their	σ_E	$G(\sigma_E 0, 0.0t \times \sqrt{1.2^2 - 1})$	Jet $p_{\rm T}$ resolution (additional smearing)
probability density functions	α_m	$G(\alpha_m 1, 0.03)$	Jet mass scale
	σ_m	$G(\sigma_m 0, 0.075 \times \sqrt{1.2^2 - 1})$	Jet mass resolution (additional smearing)
	α_y	$G(\alpha_y 1, 0.02)$	Jet momentum balance ($\sqrt{y_f}$) scale
	σ_y	$G(\sigma_y 0, 0.16 \times \sqrt{1.2^2 - 1})$	Momentum balance resolution (additional smearing)
	S_{t}	$G_{\rm t}(S_{\rm t} 0.89, 0.095, 1.07)$	Track multiplicity SF
	S _{ps}	G(1.0, 0.05)	Parton Showering uncertainty SF

Applying the Bayes theorem

 $P_{post}(T) = \mathcal{L}(n_{obs}|T)P_{prior}(T)$

The systematics are included in the priors for the Nuisance Parameters

 $T = \{\mu, B_{NP}, S_{NP}\}$

Expected limits are obtained from a serie of pseudo-experiments, fluctuating the background only histogram according to a Poisson distribution

Background only fit for WZ selection

Background only fit for WZ selection

Background only fit for WZ selection

Observed limits on W'→WZ hypotesis

Background only fit for WZ selection

Observed limits on W'→WZ hypotesis

Conclusions

- → LHC is a very powerful tool to investigate a new energy frontier
- The research of heavy resonances decaying in W/Z bosons is a fundamental part of the ATLAS and LHC physics program
- Full hadronic final states are characterized by large Branching Ratios, but this signatures are overwhelmed by the large QCD background
- In the last few years the development of jet substructure techniques significantly increased the discovery potential of this kind of searches
- Jet Substructure is the key of the ATLAS di-boson search in hadronic channels
- A very active community of theoreticians and experimentalists is providing new ideas and new tagging strategies

CERN and the LHC experiments are writing part of the exciting and never-ending story of knowledge, thanks to the passion and effort of many curious scientists

Thanks a lot for your attention and again welcome to CERN $% \mathcal{A}$

Bonus slides

Systematic Uncertainties

Systematics related to the background expectation are evaluated directly by the background estimation procedure using the fit errors as uncertainties

Systematic Uncertainties (2)

Jet Momentum Balance Scale ($\sqrt{y_f}$)

Calo-Track double ratio used also in this case

$$\sqrt{y_f}^{\text{Data}} = \alpha_y \sqrt{y_f}^{\text{MC}}$$

2 % uncertainty

 $P(\alpha_y)=G(\alpha_y|1,0.02)$

Systematic Uncertainties (3)

Norm. Syst.

Track-multiplicity efficiency

Summary or systematics

Systematics on Resolutions

- Jet Energy Resolution: 20 % uncertainty over the nominal JER (recommended by Jet Substructure for large-R jets). Nominal 5 % JER derived based on the width of energy response for MC signal after tagging.
- Jet Mass Resolution: 20 % uncertainty over the nominal JMR (recommended by Jet Substructure for large-R jets). Nominal 7.5 % JMR extracted from the width of W/Z mass shape in a control sample.
- Subjet Momentum Balance (Vy_f) Resolution: 20 % uncertainty over the nominal Vy_f Resolution. Nominal 16 %
 Vy_f Resolution extracted from response of momentum balance in MC for signal jets.

Systematic	pdf	
Luminosity	$G(S_{\rm L} 1, 0.028)$	Lincertainty on narton
Jet energy scale	$G(\alpha 1, 0.02)$	chowering model is evaluated
Jet energy resolution (additional smearing)	$G(\sigma_E 0, 0.05 \times \sqrt{1.2^2 - 1^2})$	snowening model is evaluated
Jet mass scale	$G(\alpha_m 1, 0.03)$	comparing the signal
Jet mass resolution (additional smearing)	$G(\sigma_m 0, 0.075 \times \sqrt{1.2^2 - 1^2})$	eniciencies alter the full
Momentum balance scale	$G(\alpha_y 1, 0.02)$	event selection (excluding
Momentum balance resolution (additional smearing)	$G(\sigma_y, 0, 0.16 \times \sqrt{1.2^2 - 1^2})$	n trk) obtained using Pythia and
Track-multiplicity efficiency	$G_{\rm t}(S_{\rm t} 0.89, 0.095, 1.07)$	Herwig samples
Parton shower	<i>G</i> (1.0, 0.05)	

All the systematics uncertainties and their models

Systematics Evaluation with double-ratio technique

If a detector effect has not been correctly taken into account in the MC simulation, it can produce a deviation from one of the double-ratio

Systematics Evaluation with double ratio technique - In VV→JJ Analysis

An average **2 % inefficiency in the ID-track reconstruction** was observed but **not included in the MC simulation**

Deviation from "one" observed using the nominal MC simulation is considered as systematic uncertainty

$$P_{\text{post}}(\mathbf{T}) = K \mathcal{L}(\mathbf{n}_{\text{obs}}|\mathbf{T}) P_{\text{prior}}(\mathbf{T})$$

The systematics are included in the priors for the Nuisance Parameters

Param.	pdf	Meaning
μ	flat	Signal strength relative to SSM
p_1, p_2, p_3	flat	Background parameters
$S_{\rm L}$	$G(S_{\rm L} 1, 0.028)$	Integrated luminosity SF
α	$G(\alpha 1, 0.02)$	Jet $p_{\mathrm{T}}(m_{jj})$ scale
σ_E	$G(\sigma_E 0, 0.0t \times \sqrt{1.2^2 - 1})$	Jet $p_{\rm T}$ resolution (additional smearing)
α_m	$G(\alpha_m 1, 0.03)$	Jet mass scale
σ_m	$G(\sigma_m 0, 0.075 \times \sqrt{1.2^2 - 1})$	Jet mass resolution (additional smearing)
α_y	$G(\alpha_y \mid 1, 0.02)$	Jet momentum balance ($\sqrt{y_f}$) scale
σ_y	$G(\sigma_y 0, 0.16 \times \sqrt{1.2^2 - 1})$	Momentum balance resolution (additional smearing)
S _t	$G_{\rm t}(S_{\rm t} 0.89, 0.095, 1.07)$	Track multiplicity SF
S _{ps}	G(1.0, 0.05)	Parton Showering uncertainty SF

Expected limits are obtained from a serie of pseudo-experiments, fluctuating the background only histogram according to a Poisson distribution

- Constrains on prior to avoid unphysical scenarios: p₂+p₉p₃>0, p₃<0
- Parameter C is a function of p1 and p9 is adjusted by hand to minimize the posterior correlations and then increase the sampling efficiency

Design Performances

- Proton-Proton r 2808 bunch/beam
- ●Centre of Mass Energy I 14 TeV
- ●Instantaneous Luminosity 🖛 10³⁴ cm⁻² s⁻¹
- ●Crossing rate 🖛 40 MHz

Design Performances

Proton-Proton r 2808 bunch/beam

- ●Centre of Mass Energy 🖛 14 TeV
- ●Instantaneous Luminosity 🖛 10³⁴ cm⁻² s⁻¹
- ●Crossing rate 🖛 40 MHz

From 30 of March 2010 -> 7 TeV P-P Collisions

Design Performances

- Proton-Proton r 2808 bunch/beam
- ●Centre of Mass Energy ► 14 TeV
- ●Instantaneous Luminosity 🖛 10³⁴ cm⁻² s⁻¹
- Crossing rate rate

From 30 of March 2010 -> 7 TeV P-P Collisions

Actual Perfomance (Goal 2010!)
Centre of Mass Energy ➡ 7 TeV
Instantaneous Luminosity ➡ 2.1 x 10³² cm⁻² s⁻¹

The ATLAS Physics Goals

The ATLAS Physics Goals

Precise SM measurements:

·QCD jet cross sections and α_s

·W mass

•Top quark (factory!): mass, couplings and decay properties •Search for Standard Model Higgs boson in the range $\approx 115 \text{ GeV} \le m_H \le 1 \text{ TeV}$

Inner Tracker 3 Detector

- Pixel
- Silicon
- Transition radiation

Hadronic Tile Calorimeter

Muon Spectrometer ($|\eta| < 2.7$):

- * Trigger chambers: Resistive Plate Chambers (RPC) & Thin Gap Chambers (TGC) $\sigma_t \sim ns$
- * 0.5 T Toroidal field
- * Coordinate Measurements Chambers: Monitored Drift Tubes (MDT) & Cathode Strip Chambers (CSC) $\sigma/p_T \approx 10\%$ (for $p_T = 1 \text{ TeV/c}$)

Muon Spectrometer The ATLAS Detector at LHC: Muon Spectrometer

Resistive Plate

Muon Spectrometer The ATLAS Detector at LHC: Muon Spectrometer

Resistive Plate

- Coverage |η| < 2.7
- Air core 0.5T Toroidal field in huge area
- **MDT** chambers are used for precise measurement, with < 100 μ m precision
- **CSC** chambers exist in high- η ($|\eta| > 2.0$) region of the innermost station to cope with high rate measurement
- Trigger chambers: **TGC**s (endcap) and **RPC**s (barrel)

Online muon trigger

Three levels reduce LHC interaction rate of ~1 GHz to ~200Hz:

