

The Landscape of String theory: Intersecting branes (statistics and collider signatures) and AdS flux vacua

Dieter Lüst, LMU (ASC) and MPI München

Geometry: Calabi-Yau spaces, mirror symmetry, generalized spaces, D-branes (submanifolds), K-theory, Gromov/Witten invariants, ...

Introduction:

Count the number of consistent string vacua

Vast landscape with $N_{sol}=10^{500-1500}$ vacua!

(Lerche, Lüst, Schellekens (1986), Douglas (2003))

Introduction:

Count the number of consistent string vacua

Vast landscape with
$$N_{sol} = 10^{500-1500}$$
 vacua!

(Lerche, Lüst, Schellekens (1986), Douglas (2003))

Two strategies to find something interesting:

Introduction:

Count the number of consistent string vacua

Vast landscape with
$$N_{sol} = 10^{500-1500}$$
 vacua!

(Lerche, Lüst, Schellekens (1986), Douglas (2003))

Two strategies to find something interesting:

• Explore all mathematically consistent possibilities: top down approach (quite hard), string statistics.

LMU

Introduction:

Count the number of consistent string vacua

Vast landscape with $N_{sol} = 10^{500-1500}$ vacua!

(Lerche, Lüst, Schellekens (1986), Douglas (2003))

- Two strategies to find something interesting:
- Explore all mathematically consistent possibilities: top down approach (quite hard), string statistics.
- Do not look randomly look for green (promising) spots in the landscape model building, bottom up approach.

Is the Standard Model realized in string theory?

- Is the Standard Model realized in string theory?
- If yes, how often, i.e. what is the likelihood for the SM?

- Is the Standard Model realized in string theory?
- If yes, how often, i.e. what is the likelihood for the SM?
- What is the physics beyond the SM in string theory - can we test string theory?

- Is the Standard Model realized in string theory?
- If yes, how often, i.e. what is the likelihood for the SM?
- What is the physics beyond the SM in string theory - can we test string theory?
- Does string theory make some predictions for cosmology - string/brane inflation?

- Is the Standard Model realized in string theory?
- If yes, how often, i.e. what is the likelihood for the SM?
- What is the physics beyond the SM in string theory - can we test string theory?
- Does string theory make some predictions for cosmology - string/brane inflation?
- Do we understand the cosmological constant in string theory - statistical (anthropic) explanation?

- Is the Standard Model realized in string theory?
- If yes, how often, i.e. what is the likelihood for the SM?
- What is the physics beyond the SM in string theory - can we test string theory?
- Does string theory make some predictions for cosmology - string/brane inflation?
- Do we understand the cosmological constant in string theory - statistical (anthropic) explanation?
- Are there transitions within the landscape?

- Is the Standard Model realized in string theory?
- If yes, how often, i.e. what is the likelihood for the SM?
- What is the physics beyond the SM in string theory - can we test string theory?
- Does string theory make some predictions for cosmology - string/brane inflation?
- Do we understand the cosmological constant in string theory - statistical (anthropic) explanation?
- Are there transitions within the landscape?

Today: We will discuss some aspects of the landscape of intersecting branes and fluxes

Geometrization of particles and their interactions!

Geometrization of particles and their interactions!

Dictionary:

Particles physics

Cosmology

Gauge interactions:

$$G = SU(3) \times SU(2) \times U(1)$$

Geometrization of particles and their interactions LANCK-GESELLSCHAFT

Dictionary:

Particles physics

Cosmology

Gauge interactions:

$$G = SU(3) \times SU(2) \times U(1)$$

geometry & topology of strings and branes

Geometrization of particles and their interactions LANCK-CESELLSCHAFT

geometry & topology of strings and branes

String theory:

String theory:

Unification of all particles and forces (including gravity)

(i) Closed string:

$$X^{\mu}(\sigma,\tau): \quad \Sigma_g \longrightarrow \mathcal{M}^D$$

$$S_{2d} = -\frac{T}{2} \int_{\Sigma_g} d\tau d\sigma \, \partial_{\alpha} X^{\mu}(\sigma, \tau) \partial_{\beta} X^{\nu}(\sigma, \tau) \left(\delta^{\alpha\beta} G_{(\mu\nu)} + \epsilon^{\alpha\beta} B_{[\mu\nu]} \right)$$

Background $G_{(\mu
u)}$: metric of \mathcal{M}^D space: $B_{[\mu\nu]}$: antisym. tensor field, H=dB

- ullet Massless string excitations: background fluctuations: $g_{\mu
 u},$
 - + infinitely many massive Regge excitations:

$$M_n = M_{\text{string}} \ n = \frac{1}{\sqrt{\alpha'}} \ n$$

Conformal invariance $S_{2d} \implies D = 10$

$$D = 10$$

(ii) Open strings (type II/I):

World sheets with boundary:

Boundary action:
$$S_b = \int_{\partial \widetilde{\Sigma}_g} ds \; \partial_s X^\mu(\sigma, \tau) A_\mu(X)$$

Background gauge field: $A_{\mu}(X)$, F = dA

D(p)-branes: (Polchinski (1995))

p-dimensional hypersurfaces π_{D_p} , on which open string end points move:

• Massless open string excitations on D-branes are gauge fields A_{μ}

Dp-brane:

 electric & magnetic sources for additional (Ramond) background fields:

$$A_{[\mu_1...\mu_{p+1}]} \Rightarrow F^{p+2} = dA^{p+1} \quad e = \int_{\pi_{D_p}} {}^*F^{p=2}$$

Gravitating objects: open closed interactions

$$G_{\mu\nu} \neq \eta_{\mu\nu} \,, \ F^{p+2} \neq 0$$

• Massless open string excitations on D-branes are gauge fields A_{μ}

Dp-brane:

 electric & magnetic sources for additional (Ramond) background fields:

$$A_{[\mu_1...\mu_{p+1}]} \Rightarrow F^{p+2} = dA^{p+1} \quad e = \int_{\pi_{D_n}^T} {}^*F^{p=2}$$

 Gravitating objects: open closed interactions

$$G_{\mu\nu} \neq \eta_{\mu\nu}, F^{p+2} \neq 0$$

• Massless open string excitations on D-branes are gauge fields A_{μ}

Dp-brane:

 electric & magnetic sources for additional (Ramond) background fields:

$$A_{[\mu_1...\mu_{p+1}]} \Rightarrow F^{p+2} = dA^{p+1} \quad e = \int_{\pi_{D_p}^T} {}^*F^{p=2}$$

 Gravitating objects: open closed interactions

$$G_{\mu\nu} \neq \eta_{\mu\nu} \,, \ F^{p+2} \neq 0$$

• Massless open string excitations on D-branes are gauge fields A_{μ}

Dp-brane:

 electric & magnetic sources for additional (Ramond) background fields:

$$A_{[\mu_1...\mu_{p+1}]} \Rightarrow F^{p+2} = dA^{p+1} \quad e = \int_{\pi_{D_p}} {}^*F^{p=2}$$

 Gravitating objects: open closed interactions

$$G_{\mu\nu} \neq \eta_{\mu\nu} \,, \ F^{p+2} \neq 0$$

Outline

Type II orientifolds models

Intersecting brane models and their statistics

Stringy signatures at LHC
 (The LHC string hunter's companion)

• Flux compactifications and AdS4 string vacua

Outline

Type II orientifolds models

Intersecting brane models and their statistics

Stringy signatures at LHC
 (The LHC string hunter's companion)

• Flux compactifications and AdS4 string vacua

LMU II) (Intersecting) D-brane models:

(Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001); ...)

Alternativ constructions: heterotic strings

F-theory (talk Vafa)

LMU

II) (Intersecting) D-brane models:

(Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001); ...)

Alternativ constructions: heterotic strings

F-theory (talk Vafa)

Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds:

LMU

II) (Intersecting) D-brane models:

(Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001); ...)

Alternativ constructions: heterotic strings

F-theory (talk Vafa)

Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds:

Features:

II) (Intersecting) D-brane models:

(Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001); ...)

Alternativ constructions: heterotic strings

F-theory (talk Vafa)

Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds:

Features:

 Non-Abelian gauge bosons live as open strings on lower dimensional world volumes π of D-branes.

MU II) (Intersecting) D-brane models:

MAX-PLANCK-GESELLSCHAFT

(Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001); ...)

Alternativ constructions: heterotic strings

F-theory (talk Vafa)

Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds:

Features:

- Non-Abelian gauge bosons live as open strings on lower dimensional world volumes π of D-branes.
- Chiral fermions are open strings on the intersection locus of two D-branes: $N_F = I_{ab} \equiv \#(\pi_a \cap \pi_b) \equiv \pi_a \circ \pi_b$

Perturbative type II orientifolds contain:

(Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/06 | 0327)

- Closed string 6-dimensional background geometry:
 - -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion.

Perturbative type II orientifolds contain:

(Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/06 | 0327)

- Closed string 6-dimensional background geometry:
 - -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion.
- Space-time filling D(4+p)-branes wrapped around internal p-cycles:
 - Open string matter fields.

Perturbative type II orientifolds contain:

(Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/06 | 0327)

- Closed string 6-dimensional background geometry:
 - -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion.
- Space-time filling D(4+p)-branes wrapped around internal p-cycles:
 - Open string matter fields.
- Strong consistency conditions:
 - tadpole cancellation with orientifold planes.

D6 wrapped on 3-cycles π_a angles θ_{ab}

Tadpole condition:
$$\sum_a N_a \pi_a = \pi_{O6}$$

D6 wrapped on 3-cycles π_a angles θ_{ab}

Tadpole condition:
$$\sum_a N_a \pi_a = \pi_{O6}$$

D6 wrapped on 3-cycles π_a angles θ_{ab}

Tadpole condition:

$$\sum_{a} N_a \pi_a = \pi_{O6}$$

D6 wrapped on 3-cycles π_a angles θ_{ab}

Tadpole condition:

$$\sum_{a} N_a \pi_a = \pi_{O6}$$

(Ibanez, Marchesano, Rabadan, hep-th/0105155; Blumenhagen, Körs, Lüst, Ott, hep-th/0107138)

(Intersecting) D6-brane statistics

How many orientifold models exist which come close to the (spectrum of the) MSSM?

(Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand; related work: Dijkstra, Huiszoon, Schellekens, hep-th/0411129; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/0605226; Douglas, Taylor, hep-th/0606109; Dienes, Lennek, hep-th/0610319)

Example: $\mathcal{M}_6 = T^6/(Z_N \times Z_M)$ IIA orientifold:

Systematic computer search (NP complete problem):

Look for solutions of a set of diophantic equations:

(Intersecting) D6-brane statistics

How many orientifold models exist which come close to the (spectrum of the) MSSM?

(Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand; related work: Dijkstra, Huiszoon, Schellekens, hep-th/0411129; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/0605226; Douglas, Taylor, hep-th/0606109; Dienes, Lennek, hep-th/0610319)

Example: $\mathcal{M}_6 = T^6/(Z_N \times Z_M)$ IIA orientifold:

Systematic computer search (NP complete problem):

Look for solutions of a set of diophantic equations:

(i) First study: $Z_2 \times Z_2$ orientifold:

(Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand, hep-th/0411173 & 0510170)

One in a billion models gives rise to a MSSM like vacuum!

However always chiral, massless exotics!

(ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!)

(Gmeiner, Lüst, Stein, hep-th/0703011)

In total $3.4 \cdot 10^{28}$ susy D-brane models. $5.7 \cdot 10^6$ of them possess MSSM like spectra!

(ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!)

(Gmeiner, Lüst, Stein, hep-th/0703011)

In total $3.4 \cdot 10^{28}$ susy D-brane models. $5.7 \cdot 10^6$ of them possess MSSM like spectra!

(iii) Z6'-orientifold: (Gmeiner, Honecker, arXiv:0806.3039)

(ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!)

(Gmeiner, Lüst, Stein, hep-th/0703011)

In total $3.4 \cdot 10^{28}$ susy D-brane models. $5.7 \cdot 10^6$ of them possess MSSM like spectra!

(iii) Z6'-orientifold: (Gmeiner, Honecker, arXiv:0806.3039)

(ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!)

(Gmeiner, Lüst, Stein, hep-th/0703011)

In total $3.4 \cdot 10^{28}$ susy D-brane models. $5.7 \cdot 10^6$ of them possess MSSM like spectra!

(iii) Z6'-orientifold: (Gmeiner, Honecker, arXiv:0806.3039)

(ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!)

(Gmeiner, Lüst, Stein, hep-th/0703011)

In total $3.4 \cdot 10^{28}$ susy D-brane models. $5.7 \cdot 10^6$ of them possess MSSM like spectra!

(iii) Z6'-orientifold: (Gmeiner, Honecker, arXiv:0806.3039)

(ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!)

(Gmeiner, Lüst, Stein, hep-th/0703011)

In total $3.4 \cdot 10^{28}$ susy D-brane models. $5.7 \cdot 10^6$ of them possess MSSM like spectra!

(iii) Z6'-orientifold: (Gmeiner, Honecker, arXiv:0806.3039)

Millions of standard models!

ISB models with no chiral exotics are possible!

- Study of non-perturbative effects by gaugino condensation & D-instantons:
 - talks Blumenhagen, Dudas

- Study of non-perturbative effects by gaugino condensation & D-instantons:
 - talks Blumenhagen, Dudas
 - → moduli stabilization

 Study of non-perturbative effects by gaugino condensation & D-instantons:

talks Blumenhagen, Dudas

- → moduli stabilization
- → non-perturbative couplings (Majorana neutrino masses, Yukawa couplings, ..)

- Study of non-perturbative effects by gaugino condensation & D-instantons:
 - talks Blumenhagen, Dudas
 - → moduli stabilization
 - → non-perturbative couplings (Majorana neutrino masses, Yukawa couplings, ..)
- Comparison of ISB with old model by Bachas (1995):
 ⇔ orientifolds without vector structures.

(Bachas, Bianchi, Blumenhagen, Lüst, Weigand, arXiv:0805.3696)

Outline

Type II orientifolds models

Intersecting brane models and their statistics

Stringy signatures at LHC
 (The LHC string hunter's companion)

Flux compactifications and AdS4 string vacua

Outline

Type II orientifolds models

Intersecting brane models and their statistics

Stringy signatures at LHC

(The LHC string hunter's companion)

(D. Lüst, S. Stieberger, T. Taylor, arXiv:0807.3333) (Anchordoqui, Goldberg, Lüst, Nawata, Stieberger, T. Taylor, to appear)

Flux compactifications and AdS4 string vacua

III) LHC String Hunter's Companion -

Test of D-brane models at the LHC:

New stringy physics of beyond the SM:

New massive particles:

$$-Z'$$

- Massive black holes
- Regge excitations of higher spin

- Kaluza Klein (KK) and winding modes

LIVI Low string scale and large extra dimensions (ADD):

$$M_{\mathrm{Planck}}^2 \simeq M_{\mathrm{string}}^8 V_6$$

$$V_6 M_{\rm string}^6 = \mathcal{O}(10^{16}) \Rightarrow M_{\rm string} = \mathcal{O}(1 \text{ TeV})$$

Swiss cheese geometry: holes in a Calabi-Yau space:

Quevedo, hep-th/

0502058)

SM lives on small cycles of the CY!

Disk amplitude among 4 external SM fields $(q, l, g, \gamma, Z^0, W^{\pm})$:

$$\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$$

Disk amplitude among 4 external SM fields $(q,l,g,\overset{\text{MAX-PLANCK-GESELLSCHAP}}{\gamma})$

$$\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$$

Disk amplitude among 4 external SM fields $(q, l, g, \gamma, Z^0, W^{\pm})$:

$$\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$$

These amplitudes are dominated by the following poles:

Disk amplitude among 4 external SM fields $(q,l,g,\overset{\text{MAX-PLANGK-GESELLSCHAFT}}{\gamma,Z^0,W^\pm})$:

$$\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$$

These amplitudes are dominated by the following poles:

Exchange of SM fields

Disk amplitude among 4 external SM fields $(q, l, g, \gamma, Z^0, W^{\pm})$:

$$\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$$

These amplitudes are dominated by the following poles:

- Exchange of SM fields
- Exchange of string Regge resonances (Veneziano like ampl.)
 ⇒ new contact interactions:

$$\mathcal{A}(k_1, k_2, k_3, k_4; \alpha') \sim -\frac{\Gamma(-\alpha' s) \Gamma(1 - \alpha' u)}{\Gamma(-\alpha' s - \alpha' u)} = \sum_{n=0}^{\infty} \frac{\gamma(n)}{s - M_n^2} \sim \frac{t}{s} - \frac{\pi^2}{6} tu (\alpha')^2 + \dots$$

$$V_s(\alpha') = \frac{\Gamma(1 - s/M_{\text{string}}^2)\Gamma(1 - u/M_{\text{string}}^2)}{\Gamma(1 - t/M_{\text{string}}^2)} = 1 - \frac{\pi^2}{6}M_{\text{string}}^{-4}su - \zeta(3)M_{\text{string}}^{-6}stu + \dots \to 1|_{\alpha' \to 0}$$

Disk amplitude among 4 external SM fields $(q, l, g, \gamma, Z^0, W^{\pm})$:

$$\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$$

These amplitudes are dominated by the following poles:

- Exchange of SM fields
- Exchange of string Regge resonances (Veneziano like ampl.)
 new contact interactions:

$$\mathcal{A}(k_1, k_2, k_3, k_4; \alpha') \sim -\frac{\Gamma(-\alpha' s) \Gamma(1 - \alpha' u)}{\Gamma(-\alpha' s - \alpha' u)} = \sum_{n=0}^{\infty} \frac{\gamma(n)}{s - M_n^2} \sim \frac{t}{s} - \frac{\pi^2}{6} tu (\alpha')^2 + \dots$$

$$V_s(\alpha') = \frac{\Gamma(1 - s/M_{\text{string}}^2)\Gamma(1 - u/M_{\text{string}}^2)}{\Gamma(1 - t/M_{\text{string}}^2)} = 1 - \frac{\pi^2}{6}M_{\text{string}}^{-4}su - \zeta(3)M_{\text{string}}^{-6}stu + \dots \to 1|_{\alpha' \to 0}$$

Exchange of KK and winding modes (model dependent)

4 gauge boson amplitudes:

Disk amplitude:

4 gauge boson amplitudes:

Disk amplitude:

Only string Regge resonances are exchanged ⇒

4 gauge boson amplitudes:

Disk amplitude:

Only string Regge resonances are exchanged =

These amplitudes are completely model independent!

Examples:

4 gauge boson amplitudes:

Disk amplitude:

Only string Regge resonances are exchanged ⇒

These amplitudes are completely model independent!

Examples:

$$|\mathcal{M}(gg \to gg)|^2 = g_3^4 \left(\frac{1}{s^2} + \frac{1}{t^2} + \frac{1}{u^2}\right) \left[\frac{9}{4} s^2 V_s^2(\alpha') - \frac{1}{3} (sV_s(\alpha'))^2 + (s \leftrightarrow t) + (s \leftrightarrow u)\right]$$
(Stieberger, Taylor)
$$\implies \text{dijet events}$$

$$|\mathcal{M}(gg \to g\gamma(Z^0))|^2 = g_3^4 \frac{5}{6} Q_A^2 \left(\frac{1}{s^2} + \frac{1}{t^2} + \frac{1}{u^2}\right) \left(sV_s(\alpha') + tV_t(\alpha') + uV_u(\alpha')\right)^2$$

Observable at LHC for $M_{
m string}=3~{
m TeV}^{
m Nawata, Taylor,}$ arXiv:0712.0386)

(Anchordoqui, Goldberg, Nawata, Taylor, arXiv:0712.0386)

CERN TH-Colloquium, July 23, 2008

4 gauge boson amplitudes:

Disk amplitude:

Only string Regge resonances are exchanged ⇒

These amplitudes are completely model independent!

Examples:

lpha'
ightarrow 0 : agreement with SM!

$$|\mathcal{M}(gg \to gg)|_{\alpha' \to 0}^2 \to \left(\frac{1}{s^2} + \frac{1}{t^2} + \frac{1}{u^2}\right) \frac{9}{4} \left(s^2 + t^2 + u^2\right)$$

$$|\mathcal{M}(gg \to \gamma(Z^0))|_{\alpha' \to 0}^2 \to 0$$

2 gauge boson - two fermion amplitude:

Only string Regge resonances are exchanged ⇒

These amplitudes are completely model independent!

$$|\mathcal{M}(qg \to qg)|^{2} = g_{3}^{4} \frac{s^{2} + u^{2}}{t^{2}} \left[V_{s}(\alpha') V_{u}(\alpha') - \frac{4}{9} \frac{1}{su} (sV_{s}(\alpha') + uV_{u}(\alpha'))^{2} \right]$$

$$\Rightarrow \text{ dijet events}$$

$$|\mathcal{M}(qg \to q\gamma(Z^{0}))|^{2} = -\frac{1}{3} g_{3}^{4} Q_{A}^{2} \frac{s^{2} + u^{2}}{sut^{2}} (sV_{s}(\alpha') + uV_{u}(\alpha'))^{2}$$

2 gauge boson - two fermion amplitude:

Fermions: boundary changing operators!

Note: Cullen, Perelstein, Peskin (2000)

considered: $e^+e^- \to \gamma\gamma$

Only string Regge resonances are exchanged ⇒

These amplitudes are completely model independent!

$$|\mathcal{M}(qg \to qg)|^2 = g_3^4 \frac{s^2 + u^2}{t^2} \left[V_s(\alpha') V_u(\alpha') - \frac{4}{9} \frac{1}{su} (sV_s(\alpha') + uV_u(\alpha'))^2 \right]$$

$$\Rightarrow \text{ dijet events}$$

$$|\mathcal{M}(qg \to q\gamma(Z^0))|^2 = -\frac{1}{3}g_3^4Q_A^2\frac{s^2 + u^2}{sut^2}(sV_s(\alpha') + uV_u(\alpha'))^2$$

2 gauge boson - two fermion amplitude:

Fermions: boundary changing operators!

Note: Cullen, Perelstein, Peskin (2000)

considered: $e^+e^- \rightarrow \gamma \gamma$

Only string Regge resonances are exchanged ⇒

These amplitudes are completely model independent!

 $\alpha' \to 0$: agreement with SM!

$$|\mathcal{M}(qg \to qg)|_{\alpha' \to 0}^2 = g_3^4 \frac{s^2 + u^2}{t^2} \left[1 - \frac{4}{9} \frac{1}{su} (s+u)^2 \right]$$

$$|\mathcal{M}(qg \to q\gamma(Z^0))|_{\alpha' \to 0}^2 = -\frac{1}{3}g_3^4 Q_A^2 \frac{s^2 + u^2}{sut^2} (s + u)^2$$

4 fermion amplitudes:

Exchange of Regge, KK and winding resonances.

These amplitudes are more model dependent and test the internal CY geometry.

Constrained by FCNC's and/or proton decay.

(Klebanov, Witten, hep-th/0304079; Abel, Lebedev, Santiago, hep-th/0312157)

E.g.

$$|\mathcal{M}(qq \to qq)|^{2} = \frac{2}{9} \frac{1}{t^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{cc}(\alpha') \right)^{2} + \left(uG_{ts}^{bc}(\alpha') \right)^{2} + \left(uG_{ts}^{cb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{ut}^{bb}(\alpha') \right)^{2} + \left(tG_{us}^{cb}(\alpha') \right)^{2} \right] - \frac{4}{27} \frac{s^{2}}{tu} F_{tu}^{bb}(\alpha') F_{ut}^{bb}(\alpha') + F_{tu}^{cc}(\alpha') F_{ut}^{cc}(\alpha') \right)$$

depend on internal geometry

4 fermion amplitudes:

Exchange of Regge, KK and winding resonances.

These amplitudes are more model dependent and test the internal CY geometry.

Constrained by FCNC's and/or proton decay.

(Klebanov, Witten, hep-th/0304079; Abel, Lebedev, Santiago, hep-th/0312157)

E.g.

 $\alpha' \rightarrow 0$: agreement with SM!

$$|\mathcal{M}(qq \to qq)|_{\alpha' \to 0}^2 \to \frac{4}{9} \left[\frac{s^2 + u^2}{t^2} \right] + \frac{4}{9} \left[\frac{s^2 + t^2}{u^2} \right] - \frac{8}{27} \frac{s^2}{tu}$$

These stringy corrections can be seen in dijet events at LHC:

(Anchordoqui, Goldberg, Lüst, Nawata, Stieberger, Taylor, to appear)

$$M_{\text{Regge}} = 2 \text{ TeV}$$

 $\Gamma_{\text{Regge}} = 15 - 150 \text{ GeV}$

Widths can be computed in a model independent way!

(Anchordoqui, Goldberg, Taylor, arXiv:0806.3420)

These stringy corrections can be seen in dijet events at LHC:

(Anchordoqui, Goldberg, Lüst, Nawata, Stieberger, Taylor, to appear)

$$M_{\text{Regge}} = 2 \text{ TeV}$$

 $\Gamma_{\text{Regge}} = 15 - 150 \text{ GeV}$

Widths can be computed in a model independent way!

(Anchordoqui, Goldberg, Taylor, arXiv:0806.3420)

There are possible also stringy Drell-Yan processes like

$$q\bar{q} \to l\bar{l}$$

Outline

Type II orientifolds models

Intersecting brane models and their statistics

- Stringy signatures at LHC
 (The LHC string hunter's companion)
 - Flux compactifications and AdS4 string vacua

Outline

Type II orientifolds models

Intersecting brane models and their statistics

Stringy signatures at LHC

(The LHC string hunter's companion)

(Lüst, Marchesano, Martucci, Tsimpis, to appear)

```
(Lüst, Tsimpis, hep-th/0412250)
(Kounnas, Lüst, Petropoulus, Tsimpis, arXiv:0707.4270)
(Koerber, Lüst, Tsimpis, arXiv:0804.0614)
(Caviezel, Koerber, Körs, Lüst, Tsimpis, Zagermann, arXiv:0806.3458)
```

CERN TH-Colloquium, July 23, 2008

IV) Flux compactifications

IV) Flux compactifications

so far: $H, F^{p+2} = 0$

internal space is CY: $dJ = d\Omega = 0$

external space: Minkowski $\mathbb{R}^{1,3}$

IV) Flux compactifications

so far: $H, F^{p+2} = 0$

internal space is CY: $dJ = d\Omega = 0$

external space: Minkowski $\mathbb{R}^{1,3}$

Now flux backgrounds: $\oint_{\Sigma} F^{p+2}, H \neq 0$

internal space: non-CY

external: max sym. space: e.g. dS_4 , AdS_4

Supersymmetric AdS_4 Compactifications: Motivation to study these class of vacua:

Motivation to study these class of vacua:

Moduli stabilization

Motivation to study these class of vacua:

- Moduli stabilization
- Starting point for more realistic string vacua with broken supersymmetry (KKLT uplift)
 - ⇒ soft SUSY masses

Motivation to study these class of vacua:

- Moduli stabilization
- Starting point for more realistic string vacua with broken supersymmetry (KKLT uplift)
 - ⇒ soft SUSY masses
- Starting point for string cosmology talks Taylor, Shiu

Motivation to study these class of vacua:

- Moduli stabilization
- Starting point for more realistic string vacua with broken supersymmetry (KKLT uplift)
 - ⇒ soft SUSY masses
- Starting point for string cosmology talks Taylor, Shiu
- Correspond to supersymmetric brane solutions
 ⇔ domain walls
 - ⇒ Transitions in the landscape.

(similar to Coleman/de Luccia)

(see also: A. Ceresole, G. Dall'Agata, A. Giryavets, R. Kallosh, A. Linde, hep-th/0605266; G. Dvali, D. Lüst, arXiv:0801.1287)

Motivation to study these class of vacua:

- Moduli stabilization
- Starting point for more realistic string vacua with broken supersymmetry (KKLT uplift)
 - ⇒ soft SUSY masses
- Starting point for string cosmology talks Taylor, Shiu
- Correspond to supersymmetric brane solutions
 ⇔ domain walls
 - ⇒ Transitions in the landscape.

(similar to Coleman/de Luccia)

(see also: A. Ceresole, G. Dall'Agata, A. Giryavets, R. Kallosh, A. Linde, hep-th/0605266; G. Dvali, D. Lüst, arXiv:0801.1287)

• AdS_4/CFT_3 correspondence

3-form fluxes on (warped) Calabi-Yau manifolds:

3-form fluxes on (warped) Calabi-Yau manifolds:

KKLT-Proposa: (Kachru, Kallosh, Linde, Trivedi, hep-th/0301240)

3-form fluxes on (warped) Calabi-Yau manifolds:

KKLT-Proposa: (Kachru, Kallosh, Linde, Trivedi, hep-th/0301240)

Step I: Fix all moduli (preserving SUSY)
Dilaton and complex structure moduli U are stabilized with 3-form fluxes, Kähler moduli T are fixed by non-perturbative effects → SUSY AdS4 vacuum.

Superpotential: $W = W_{\text{flux}}(S, U) + W_{\text{non.-pert.}}(e^{-T})$

3-form fluxes on (warped) Calabi-Yau manifolds:

KKLT-Proposal: (Kachru, Kallosh, Linde, Trivedi, hep-th/0301240)

Step I: Fix all moduli (preserving SUSY)
Dilaton and complex structure moduli U are stabilized with 3-form fluxes, Kähler moduli T are fixed by nonperturbative effects → SUSY AdS4 vacuum.

Superpotential: $W = W_{\text{flux}}(S, U) + W_{\text{non.-pert.}}(e^{-T})$

Step 2: Lift the minimum of the potential to a positive value by introducing $\overline{D3}$ branes or D7-branes with F-flux \rightarrow metastable dS4 vacuum.

LMU KKLT IIB examples with all moduli stabilized:

Toric Calabi-Yau orientifolds (blown-up orbifolds):

(Denef, Douglas, Florea, Grassi, Kachru, hep-th/0503124, Lüst, Reffert, Schulgin, Stieberger, hep-th/0506090; Lüst, Reffert, Schulgin, Scheidegger, Stieberger, hep-th/060913, hep-th/0609014)

LIVIU KKLT IIB examples with all moduli stabilized:

• Toric Calabi-Yau orientifolds (blown-up orbifolds):

(Denef, Douglas, Florea, Grassi, Kachru, hep-th/0503124, Lüst, Reffert, Schulgin, Stieberger, hep-th/ 0506090; Lüst, Reffert, Schulgin, Scheidegger, Stieberger, hep-th/060913,hep-th/0609014)

Large volume compactifications:

(Berg, Haack, Körs, hep-th/0404087; Balasubramanian, Berglund, Conlon, Quevedo, hep-th/0502058; Blumenhagen Moster, Plauschinn, arXiv:0711.3389)

Large CY-volume after quantum effects:

$$V_6 M_{
m string}^6 = \mathcal{O}(10^{16}) \Rightarrow M_{
m string} = \mathcal{O}(10^{11} {
m GeV}) \left(m_{3/2} \sim \frac{M_{
m string}^2}{M_{
m Planck}} = \mathcal{O}(1 {
m TeV})\right)$$

LMU KKLT IIB examples with all moduli stabilized:

MAX-PLANCK-GESELLSCHA

• Toric Calabi-Yau orientifolds (blown-up orbifolds):

(Denef, Douglas, Florea, Grassi, Kachru, hep-th/0503124, Lüst, Reffert, Schulgin, Stieberger, hep-th/0506090; Lüst, Reffert, Schulgin, Scheidegger, Stieberger, hep-th/060913, hep-th/0609014)

• Large volume compactifications:

(Berg, Haack, Körs, hep-th/0404087; Balasubramanian, Berglund, Conlon, Quevedo, hep-th/0502058; Blumenhagen Moster, Plauschinn, arXiv:0711.3389)

Large CY-volume after quantum effects:

$$V_6 M_{\mathrm{string}}^6 = \mathcal{O}(10^{16}) \Rightarrow M_{\mathrm{string}} = \mathcal{O}(10^{11} \mathrm{GeV}) \left(m_{3/2} \sim \frac{M_{\mathrm{string}}^2}{M_{\mathrm{Planck}}} = \mathcal{O}(1 \mathrm{\,TeV}) \right)$$

 $\hbox{ \bullet Orientifold of } K3\times T^2 \hbox{ : (Sen, hep-th/9702165)} \atop \hbox{ (Angelantonj, D´Auria, Ferrara, Trigiante, hep-th/0312019)} \atop \hbox{ (Lüst, Mayr, Reffert, Stieberger, hep-th/0501139)} \atop \hbox{ (Aspinwall, Kallosh, hep-th/0506014)}$

3-form fluxes: break N=2 SUSY to N=1 stabilize S and U fields

gaugino condensation on D7-branes: stabilize volume of K3

CERN TH-Colloquium, July 23, 2008

Need only fluxes (F,H) & geometrical fluxes $\Rightarrow AdS4$ vacua

Need only fluxes (F,H) & geometrical fluxes \Rightarrow AdS4 vacua

IIA with fluxes on six-torus

Replace fluxes by (2+p)-dim. branes (sources):

(C. Kounnas, D. Lüst, M. Petropoulos, D. Tsimpis, arXiv:0707.4270)

AdS4 Domain wall solutions

The corresponding sources are intersecting D4, NS5 and D8-branes:

IIA with fluxes on six-torus

DW

Replace fluxes by (2+p)-dim. branes (sources):

(C. Kounnas, D. Lüst, M. Petropoulos, D. Tsimpis, arXiv:0707.4270)

AdS4 Domain wall solutions

The corresponding sources are intersecting D4, NS5 and D8-branes:

• IIA with fluxes on cosets spaces:

$$\mathcal{M}_6 = CP_3, SU(2)^2, \frac{SU(3)}{U(1)^2}, \frac{Sp(4)}{U(2)}, \frac{G_2}{SU(3)}$$

(Aldazabal, Font, arXiv: 0712.1021; Tomasiello, arXiv:0712.1396; Koerber, Lüst, Tsimpis, arXiv: 0804.0614)

Need only fluxes (F,H) & geometrical fluxes \Rightarrow AdS4 vacua

• IIA with fluxes on six-torus

 $IR^{1,3}$

 AdS_{\bullet}

DW

AdS4 Domain wall solutions

The corresponding sources are intersecting D4, NS5 and D8-branes:

• IIA with fluxes on cosets spaces:

$$\mathcal{M}_6 = CP_3, SU(2)^2, \frac{SU(3)}{U(1)^2}, \frac{Sp(4)}{U(2)}, \frac{G_2}{SU(3)}$$

IIA/IIB on Nilmanifolds (twisted tori)

(Aldazabal, Font, arXiv: 0712.1021; Tomasiello, arXiv:0712.1396; Koerber, Lüst, Tsimpis, arXiv: 0804.0614)

Need only fluxes (F,H) & geometrical fluxes \Rightarrow AdS4 vacua

IIA with fluxes on six-torus

(C. Kounnas, D. Lüst, M. Petropoulos, D. Tsimpis, arXiv:0707.4270)

 \mathcal{M}_6

AdS4 Domain wall solutions

The corresponding sources are intersecting D4, NS5 and D8-branes:

• IIA with fluxes on cosets spaces:
$$\mathcal{M}_6=CP_3, SU(2)^2, \frac{SU(3)}{U(1)^2}, \frac{Sp(4)}{U(2)}, \frac{G_2}{SU(3)}$$

(Aldazabal, Font, arXiv: 0712.1021; Tomasiello, arXiv:0712.1396; Koerber, Lüst, Tsimpis, arXiv: 0804.0614)

IIA/IIB on Nilmanifolds (twisted tori)

They all fall in category of non CY-spaces, talk Louis i.e. generalized geometries with torsion!

CERNTH-Colloquium, July 23, 2008

Some new developments:

Some new developments:

Non-susy flux compactifications

(Camara, Grana, arXiv:0710.4577; Lüst, Marchesano, Martucci, Tsimpis, to appear)

talks Camara, Choi, Nilles

Some new developments:

Non-susy flux compactifications

(Camara, Grana, arXiv:0710.4577; Lüst, Marchesano, Martucci, Tsimpis, to appear)

talks Camara, Choi, Nilles

String inflation with IIA/IIB orientifolds:

Compute phenomenological (experimental) quantities:

$$n_S, r = n_T/n_S, G\mu$$

Some new developments:

Non-susy flux compactifications

(Camara, Grana, arXiv:0710.4577; Lüst, Marchesano, Martucci, Tsimpis, to appear)

talks Camara, Choi, Nilles

String inflation with IIA/IIB orientifolds:

Compute phenomenological (experimental) quantities:

$$n_S, r = n_T/n_S, G\mu$$

Examples:

Some new developments:

Non-susy flux compactifications

(Camara, Grana, arXiv:0710.4577; Lüst, Marchesano, Martucci, Tsimpis, to appear)

talks Camara, Choi, Nilles

String inflation with IIA/IIB orientifolds:

Compute phenomenological (experimental) quantities:

$$n_S, r = n_T/n_S, G\mu$$

Examples:

(i) IIA Nilmanifold with D4-branes

(Silverstein, Westphal, arXiv:0803.3085)

$$V(\phi) \sim \phi^{2/3}$$

Some new developments:

Non-susy flux compactifications

(Camara, Grana, arXiv:0710.4577; Lüst, Marchesano, Martucci, Tsimpis, to appear)

talks Camara, Choi, Nilles

String inflation with IIA/IIB orientifolds:

Compute phenomenological (experimental) quantities:

 $n_S, r = n_T/n_S, G\mu$

Examples:

(ii) K3 x T2 with D3/D7-branes

(Haack, Kallosh, Krause, Linde, Lüst, Zagermann, arXiv:0804.3961)

$$V = \frac{g^2 \xi^2}{2} \left(1 + \frac{g^2}{4\pi^2} \ln \frac{\phi}{\sqrt{\xi}} \right) - \frac{m^2}{2} \phi^2$$

rm n.p. F-term

Chaotic Inflation

Chaotic Inflation

In addition cosmic strings $G\mu=7\times 10^{-7}$

 There exists many ISB models with SM like spectra without chiral exotics.

- There exists many ISB models with SM like spectra without chiral exotics.
- One can make some model independent predictions:

(Independent of amount of (unbroken) supersymmetry!)

String tree level, 4-point processes with 2 or 4 gluons observable at LHC ?? - $M_{\rm string}$??

- There exists many ISB models with SM like spectra without chiral exotics.
- One can make some model independent predictions:

(Independent of amount of (unbroken) supersymmetry!)

String tree level, 4-point processes with 2 or 4 gluons observable at LHC ?? - $M_{\rm string}$??

Computations done at weak string coupling ! Black holes are heavier than Regge states: $M_{b.h.} = \frac{M_{\rm string}}{g_{\rm string}}$

- There exists many ISB models with SM like spectra without chiral exotics.
- One can make some model independent predictions:

(Independent of amount of (unbroken) supersymmetry!)

String tree level, 4-point processes with 2 or 4 gluons observable at LHC $\ref{lem:heat:eq}$ - $M_{\rm string}$??

Computations done at weak string coupling! Black holes are heavier than Regge states: $M_{b.h.} = \frac{M_{\rm string}}{g_{\rm string}}$

Question: do loop and non-perturbative corrections change tree level signatures? Onset of n.p. physics: $M_{b.h.}$

- There exists many ISB models with SM like spectra without chiral exotics.
- One can make some model independent predictions:

(Independent of amount of (unbroken) supersymmetry!)

String tree level, 4-point processes with 2 or 4 gluons observable at LHC $\ref{lem:harmonic}$ - $M_{\rm string}$??

Computations done at weak string coupling! Black holes are heavier than Regge states: $M_{b.h.} = \frac{M_{\rm string}}{g_{\rm string}}$

Question: do loop and non-perturbative corrections change tree level signatures? Onset of n.p. physics: $M_{b.h.}$

Further informations by cosmology (Planck satellite, ..)

 There exists many ISB models with SM like spectra without chiral exotics.

change tree level signatures? Onset of n.p. physics: $M_{b.h.}$

Further informations by cosmology (Planck satellite, ..)