Signal Shapes in the ALICE TPC

Mesut Arslandok Institut für Kernphysik, Frankfurt

IWAD and the 14th RD51 Collaboration Meeting Kolkata, India 29.10.2014

OUTLINE

Introduction

- A Large Ion Collider Experiment, ALICE
- Time Projection Chamber, TPC
- TPC Laser System

ALICE TPC Signal Shape

- Motivation → Ion-Tail and Common-Mode
- Signal Shape studies with Real Data
- Ion-Tail: Garfield Simulations
- Offline Correction Procedure
- Results
- Summary

ALICE Detector Setup

TPC: Main tracking and particle identification (PID) detector

RD51 Collaboration Meeting, 29.10.14

Time Projection Chamber, TPC

→ Designed to measure up to 20000 primary and secondary particles in a single central Pb-Pb collision
HV electrode (100 kV)

- Ne-CO₂: 90% -10%
- Read-out chambers: 72
- 159 rows (maximum number of clusters per track)
- Pads (readout channels): 557 568
- Time bins (samples in z direction): 1000

Working Principle

TPC LASER SYSTEM

\rightarrow For the Signal Shape analysis TPC laser data was used.

TPC cluster over a 5x5 pad-timebin matrix

Laser Signal before pedestal subtraction \rightarrow 2000 events

ALICE TPC Signal Shape

MOTIVATION

→ The PID is calculated from the specific energy loss measurement (dE/dx), which is derived from the pulse height distribution of charged particle tracks

Common-Mode → Along pad direction

Ion-Tail \rightarrow Along time direction

Common-Mode Effect: Charge Conservation

IROC

Outer OROC

RD51 Collaboration Meeting, 29.10.14

Mesut Arslandok, Signal Shapes in the ALICE TPC

Ion Tail: Reason

Ion Tail: Dependencies

Ion tail signal shape depends on:

- → Anode Voltage
- \rightarrow Signal **position** on a given pad wrt to the center of gravity of cluster
- \rightarrow Geometry.

Voltage Dependence

Position Dependence

Ion Tail: Garfield Simulations

- ightarrow 3D setup which similar to the IROC geometry of TPC
- \rightarrow Calculations were done with **NEBEM**
- ightarrow Ne⁺ ions are drifting in Ne gas

Ion Tail: Ion Distributions

Distribute ions around the wire as a triple gaussian profile

Distribute ions with the shape of Pad Response f. along the anode wires

Ion Tail: Garfield Simulation Results

ALICE

Ion Tail: Simulation vs Real Data

- **Baseline** \rightarrow Distributions of **ions around wire**.
- Ion arrival time \rightarrow Ne⁺ in Ne is not the right assumption.

Ion mobility measurements for gas mixtures is needed.

Ion Tail: Simulation vs Real Data

- → Baseline is tuned playing with the **distribution of ions around the wire**
- ightarrow lon mobility scaled with a constant factor to match ion arrival

OFFLINE CORRECTION PROCEDURE

How to Correct ?

→ Common-mode : Rely on charge conservation on a given anode wire segment

→ Ion-Tail: Use normalised Time Response Functions (TRF)

How to Correct ?

TOY MC

How to judge ?

Judge by looking at;

- \rightarrow **MIP position**: Peak position of pions
- → **dE/dx resolution**: (sigmaPi/meanPi)
- → Seperation power: (meanEl meanPi)/((sigmaEl+sigmaPi)*0.5)

Final Results: Real Data

f : Experimental factor, which compensates the missing charge.

Final Results: MC

→ To obtain more realistic MC description, both effects should be added to the detector response.

MIP position

SUMMARY

- **TPC signal shape** was studied using Laser data.
- Ion tail is reproduced with 3D Garfield simulations
 → Ion mobility measurements for gas mixtures would allow for
 a better matching between data and simulation
- Ion tail and common mode effects were simulated and corrected successfully
- It is proven that offline correction of both effects improves the dE/dx resolution thus the **PID quality** of ALICE.

BACKUP

• To obtain more realistic MC description for **RUN1**, ion tail should be added to the detector response.

→ E.g number of observed signals, dEdx characteristic and the dependence on the track multiplicity is not described at all.

 In the TDR it was assumed that signal correction (Ion Tail) will be done on the hardware level in ALTRO. However, due to instabilities in software, given functionality was not enabled.

 \rightarrow For **Run2** given problem should be already fixed.

• PbPb events:

- \rightarrow ~ 20 % of the clusters are lost
- \rightarrow ~ 20 % shift of the mean dEdx
- → Fluctuations of the dEdx bias leads to worsening of dEdx resolution (Effects are linearly proportional to local track density)
- pPb events:
 - \rightarrow ~ 5 % effect for highest multiplicity events.

MC should be dEdx calibrated in the similar way as the raw data

TPC LASER SYSTEM

- → 336 Laser Rays (168 on each side)
- → 2 Sides, 6 Laser Rods, 4 Bundles, 7 micromirrors

 \rightarrow z-Positions;

odd rods: ±130, 850,1690, 2470 mm even rods: ±100, 790, 1630, 2410 mm

Pad Response Function

REMINDERS (III)

Preparation of the TRFs \rightarrow Removal of frequencies + smoothing

3) Smoothing with TLinearFitter

Wire geometries

RD51 Collaboration Meeting, 29.10.14

signal [a.u.]

REMINDER (II)

\rightarrow Try to estimate the shape of distribution from the hit points of the electrons on the wire

- 1. Amplitude is fixed (ampSide*(4/3) = ampCentral)
- 2. MeanSide = Center of side peak
- **3. Sigma** = Sigma of central peak such that (middle peak sigma) = (side peak sigma)*2

WHAT IS NEW ?

 $\frac{c}{2\alpha\Gamma(1/\beta)} e^{-(|x-\mu|/\alpha)^{\beta}}$

1) Use generalized normal distribution \rightarrow new parameter β

2) Vary the number of ions in the cluster

MOTIVATION

REAL DATA:

- → Time Response Functions (TRFs) for **different distances to COG of cluster**.
- → Central (top curve), outermost (bottom curve)
- \rightarrow Each step is 0.4 mm

