

Gain Ar-CO₂ mixtures

AGH

Özkan ŞAHİN & Tadeusz KOWALSKI

Uludağ University, Physics Department, Bursa – TURKEY

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow – POLAND

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

High-precision gas gain and energy transfer measurements in Ar–CO₂ mixtures

NUCLEAR

Özkan Şahin^{a,*}, Tadeusz Z. Kowalski^b, Rob Veenhof^{a,c}

^a Department of Physics, Uludağ University, 16059 Bursa, Turkey

^b Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland

^c RD51 collaboration, CERN, Genève, Switzerland

ARTICLE INFO

Article history: Received 31 May 2014 Received in revised form 20 September 2014 Accepted 23 September 2014 Available online 2 October 2014

Keywords: Gas detectors Penning transfer Excited states Photon feedback

ABSTRACT

Ar–CO₂ is a Penning mixture since a fraction of the energy stored in Ar $3p^53d$ and higher excited states can be transferred to ionize CO₂ molecules. In the present work, concentration and pressure dependence of Penning transfer rate and photon feedback parameter in Ar–CO₂ mixtures have been investigated with recent systematic high-precision gas gain measurements which cover the range 1–50% CO₂ at 400, 800, 1200, 1800 hPa and gas gain from 1 to 5×10^5 .

© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.nima.2014.09.061

Gain measurements

- Solve Gains for 6 admixture concentrations: Ar + 1%, 2%, 4%, 5.73%, 30%, 50% CO_2
- Single wire cylindrical tubes: $r_c = 1.25$ cm; $r_a = 24$ μm, 50 μm
- Current method
- * A special grid of guard rings protecting the node
- ✤ Radiation source: mono energetic X-rays
- Very carefully calibrated equipments
 less than 5% error on gas gain
 no need to use gain scaling (see next slides: gain fits)
 Wide gain regime: 1 10⁵
- Photon feedback: visible $G > 10^4$
- Measured by Tadeusz KOWALSKI

Calculation method

* Ar 3d and higher excitations included (transport parameters using Magboltz)

IWAD and the 14th RD51 Collaboration Meeting 27–31 October 2014 Kolkata, INDIA

Transfer mechanisms

- $e^- + A \rightarrow A^+ + 2e^-$: ionisation
- $e^- + A \rightarrow A^*$: excitation
- * The following can happen for an excited atom (A^*) :
 - $A^* + B \rightarrow A + B + + e^- : collisional ionisation,$
 - $A^* + A \rightarrow A_2 + + e^{-1}$
 - $A^* \to A + \gamma$

- : homonuclear associative ionisation,
- : radiative decay

$$r = \frac{pc \frac{f_{B^{+}}}{\tau_{A^{*}B}} + p(1-c) \frac{f_{A^{+}}}{\tau_{A^{*}A}} + \frac{f_{rad}}{\tau_{A^{*}}}}{r_{A^{*}}}}{\frac{pc \frac{f_{B^{+}} + f_{\overline{B}}}{\tau_{A^{*}B}}}{r_{A^{*}B}} + p(1-c) \frac{f_{A^{+}} + f_{\overline{A}}}{\tau_{A^{*}A}} + \frac{1}{\tau_{A^{*}}}}{A^{*} - A}$$

Modeling of the transfer rates

Some measurements are repeated

• Fit function for 1%, 2% CO_2

$$r(p) = \frac{b_1 p}{p + b_2}$$

Some transfer rates drop at the highest pressure !!!

- \diamond excited argon molecule formations
 - $Ar^* + Ar + Ar \rightarrow Ar_2^* + Ar$

destruction of the excited states in 3-body reaction

$$r(p) = \frac{b_1 p + b_3}{p + b_2} + \frac{b_4 p^2}{p^2}$$

IWAD and the 14th RD51 Collaboration Meeting 27–31 October 2014 Kolkata, INDIA

• \mathbf{p}^2 dependence:

evidence of 3-body interactions

Fit parameters of the transfer curves

CO ₂ (%)	b ₁	<i>b</i> ₂	<i>b</i> ₃
1 2 4 5.73 30	$\begin{array}{c} 0.1667 \pm 0.0031 \\ 0.2434 \pm 0.0032 \\ 0.3432 \pm 0.0179 \\ 0.3999 \pm 0.0217 \\ 0.7046 \pm 0.0708 \end{array}$	0.0287 ± 0.0156 0.0858 ± 0.0119 0.1208 ± 0.0341 0.0898 ± 0.0398 0.1970 ± 0.0786	- - 0.0068 \pm 0.0044 - 0.0070 \pm 0.0045 - 0.0235 \pm 0.0142
50	0.6974 ± 0.0507	0.1324 ± 0.0488	-0.0134 ± 0.0119

http://dx.doi.org/10.1016/j.nima.2014.09.061

IWAD and the 14th RD51 Collaboration Meeting 27–31 October 2014 Kolkata, INDIA

Transfer rates at 1070 hPa extracted from earlier data

- Extended version of published plot,
- 1.06 gain scaling factor were used, $G = g G_{meas}$
- ✤ Negative radiative term (a₃/a₂) ???

IWAD and the 14th RD51 Collaboration Meeting 27-31 October 2014 Kolkata, INDIA

Transfer rates at 1070 hPa with the present data

- ✤ Joint fit gives transfer rates at1070 hPa,
- Narrow error band both at low and high CO₂ percentages,
- ✤ All the fit parameters are physical, relevant to learn about radiative transfers.

Parameter	This work	
a ₁ a ₂ a ₃	$\begin{array}{c} 0.6643 \pm 0.0208 \\ 0.0518 \pm 0.0056 \\ 0.0028 \pm 0.0009 \end{array}$	

http://dx.doi.org/10.1016/j.nima.2014.09.061

Positive radiative term !!! a3/a2 = 0.0541 +/- 0.0183

Pressure and concentration depence of feedback

Decreases of β easy to explain in terms of photon mean free path !!!

IWAD and the 14th RD51 Collaboration Meeting 27-31 October 2014 Kolkata, INDIA

Photo – absorption cross section of CO₂

Cross section compiled from J. Berkowitz, *Atomic and Molecular Photoabsorption*, Chapter 5, p. 189–197, Academic Press (2002)

 \clubsuit photons from 3d and higher radiative levels can ionise CO_2

* 4s photons produce photo – electron if they arrive the cathode but they can not ionise CO_2

 \Rightarrow non – radiative states decays to intermediate states; they have not enough energy to ionise CO₂ or to extract electron from cathode

 $\sigma_{pa}: 3d, 5s > 4s > 4d$

Production rates and avalanche region

they are not lost in Penning transfers
they can contribute to feedback effectively by arriving the cathode ???

 $r_{size} = \frac{V_{anode}(gain\,curves)}{E(\alpha = 1, Magboltz) \log(r_{tube}/r_{anode})}$

Absorption distance of the excited states

✤ Both avalanche sizes and photon mean free path decreases with pressure and size reduction is smaller than the mean free path

♦ photons in 1% and 2% CO_2 stopped outside the avalanche (still in gas) while the rest are absorbed in the avalanche

IWAD and the 14th RD51 Collaboration Meeting 27-31 October 2014 Kolkata, INDIA

Size in the tube with thinner anode wire is smaller: explains bigger beta for $r_a = 24 \ \mu m$

SUMMARY

* Energy transfer mechanisms in $Ar - CO_2$ mixtures enlightened from the fits of the recent high-precision gain measurements,

✤ Calculated transfer rates confirm the published data[Ö. Şahin et al. JINST P05002 (2010) 1–30],

✤ Diminish of the rates at the highest pressure indicates that 3-body interaction losses of excited argon states (excimer formation),

* The drop on the rate is modelled with a reduction parameter,

* Ar 4s excited state is the dominant feedback source,

✤ Feedback parameters implies that argon excimers, high level excited states of argon and ions are other potantial feedback sources.

Next:

♦ We hope to publish the results for Ne – CO_2 mixtures, soon (measured data by Tadeusz KOWALSKI in Krakow)

✤ Important mixture for ALICE-TPC.

Thanks and ???

IWAD and the 14th RD51 Collaboration Meeting 27–31 October 2014 Kolkata, INDIA