Micromegas as Low Background x-ray detectors in axion searches: CAST & IAXO

J. G. Garza¹ On behalf of U. de Zaragoza RD51 Collaboration Meeting - 29th October 2014 - Kolkata

¹ jgraciag@unizar.es

Micromegas, J. G. Garza et. al, RD51 Collaboration Meeting (29 Oct. 2014)

Outline

- Axion helioscopes: CAST & IAXO
- Micromegas in CAST.
- Background level and background model.
- Prospects: background reduction and lowering the enegy threshold
- Conclusions.

Axion detection by an helioscope

Production: *Primakoff effect.* Thermal photons interacting with solar nuclei produce axions.

Detection: *inverse Primakoff* (Sikivie 1983) Axions in a magnetic field convert to photons. Expected x-ray excess when the magnet points to the Sun.

Axions are the most elegant solution to the Strong CP problem (why QCD does not seem to break the CP symmetry):

- Axion-like particles (ALPs) are predicted by many extensions of the Standard Model.
- Candidates for both cold and hot dark matter.
- Predicted in many extensions of the Standard Model, relevant parameter space at reach of current or near future experiments.

CAST: CERN Axion Solar Telescope

Description of CAST:

- Decommissioned prototype LHC dipole magnet.
- Length = 9.3 m. Field = 9 T.
- Range of movement: 80° horizontally and ± 8° vertically.
- Solar tracking possible during sunrise and sunset (2 x 1.5 h per day).

Detectors since 2010:

- Sunrise: x-ray focusing device + CCD, and Micromegas microbulk.
- Sunset: 2 Micromegas microbulk detectors.

Detector figure of merit

IAXO: International AXion Observatory

- New generation of axion helioscope.
- 4 orders of magnitude better in S/N wrt CAST, i.e. 1-2 orders in g_{av} .
- New features: toroidal magnet, dedicated optics, low background detectors.
- CAST can explore a big part of the axion model region in next decade.
- Positive recommendations from SPSC.
- More details: IAXO-CDR (2014 JINST 9 T05002) & NGAH (JCAP 06 (2011) 013).

Several preparatory activities in parallel for the Technical Design Report (TDR):

- > **IAXO-T0**: a demonstration coil.
- > **IAXO-X0**: a prototype x-ray optics.
- > **IAXO-DO**: a low background detector.
- Pathfinder: a small optics & detector at CAST. The same techniques as for IAXO.

Micromegas in CAST

The goal is to develop efficient x-ray detectors with low background and energy threshold.

Readout plane

CAST Micromegas at Sunset

CAST Micromegas at Sunrise

CAST-MMFeatures

- Active area: 6x6 cm (120x120 strips).
- Gas: $Ar+iC_2H_4$ at 1.4 bar.
- Conversion/Drift region: 3 cm (100 V/cm). ٠
- Amplification gap: 50 μ m (10⁴ V/cm).
- X-ray window: 4 µm aluminized mylar.
- Radiopure materials: copper, kapton, teflon.

Why are they used in axion searches?

- High power to discriminate x-rays signals from other type of events. Event topology.
- Intrinsically radiopure, very low radioactivity budget (Astr. Part. 34 (2011) 354).
- Shielding techniques from low background experiments are also applied.

X-ray (punctual energy depositions.) vs. Background events

Passive shielding : lead & copper

Active shielding: muon vetos.

Why are they used in axion searches?

- Gain uniformity.
- Consolidated fabrication (JINST 5 (2010) P02001, JINST 7 (2012) P04007).
- Good energy resolution (12% FWHM at 5.9 keV)
- Stable over long running periods.

Long term stability

Micromegas + X-ray Telescope at CAST 2014

X-ray telescope (XRT), specifically designed and built for CAST.

Window + strongback cathode.

Micromegas Intensity map: ⁵⁵Fe calibration.

Micromegas intensity

Micromegas

Simulation

Simulation & Micromegas data over-plotted

map of x-ray source through the optics.

- XRT installed + commissioned in August 2014.
- Big milestone for CAST \rightarrow best SNR ratio.
- X-rays from an x-ray source in the other side of magnet (13 m away) and focused by the XRT on the Micromegas detector.

Micromegas Background evolution at CAST

JINST 9 (2014) P01001:

Low background x-ray detection with Micromegas for axion research

JINST 8 (2013) C12042

X-ray detection with Micromegas with background levels below 10^{-6} keV⁻¹cm⁻²s⁻¹

- Underground level: 10⁻⁷ keV⁻²cm⁻² s⁻¹, almost at required IAXO levels.
- XRT+ MM line in CAST-2014 for the first time below 10⁻⁶ keV⁻²cm⁻² s⁻¹.
 Setup easy to improve → further background reductions expected.
- Application of low background techniques → more than 2 orders of magnitude improvement in background over the years.

Background level at CAST in 2014

XRT/MM Line: below 10^{-6} keV⁻²cm⁻²s⁻¹ \rightarrow (0,86 ± 0.06)·10⁻⁶ in 670 hours.

SUNSET Detectors CAST-2014 $(1,00 \pm 0,06) \cdot 10^{-6}$ (0,99 ± 0,06) $\cdot 10^{-6}$

in 1317 hours.

- Background spectrum characteristic of an 8 keV x-ray (copper k_α) + escape peak (5 keV) + 3 keV (argon k_α).
- A background reduction requires the identification of the origin of these dominant events.

Current Background Model based on:

- In situ measurements at CAST.
- Surface tests at Zaragoza (Spain).
- Canfranc Underground Laboratory: CAST-MM replica.
- Geant4 Montecarlo simulations of CAST-MM.

 R&D activity to reduce the dominant contributions to background (main IAXO-Micromegas TDR activity).

IAXO-Micromegas R&D on background

SURFACE \rightarrow achieve (at least) underground lower limits.

- Build a first prototype of a Micromegas detection line as would be in IAXO.
- Better (thicker) lead shielding with less openings.
- 4π muon veto.
- Where? Zaragoza. When? 2014-2016.

UNDERGROUND → pushing lower limits

- Gas change: Argon → Xenon/Neon? No ³⁹Ar radio-activity. No 5 keV and 3 keV fluorescence peaks.
- **Detectors size**: larger detector \rightarrow double cluster identification.
- Thicker lead shielding: $10 \rightarrow 15$ cm.
- Neutron shielding: polyethylene.

Lowering the enegy threshold

- Motivation: with the XRT efficiency, big part of the axion flux is expected below 2 keV.
- In non-hadronic axion models, the Sun produces axion by BCA processes. The axion flux peaks at sub-keV energies.

• R&D in this line	 thinner x-ray windows windows. auto-trigger electronics (AGET) S. Anvar et al, NSS/MIC/RTSD IEEE 2011 new gas mixtures with higher gain (Neon?). resistive microbulk. Calibrations at lower energies.
--------------------	---

CONCLUSIONS

- Micromegas: excellent option for x-ray detection in axion physics.
- CAST-2014 LLNL XRT + MM succesfully installed → IAXO optics+detector pathfinder system.
- In CAST, 2 orders of magnitude of background reduction over the years, currently slightly below 10⁻⁶ keV⁻²cm⁻²s⁻¹.
- IAXO bacground goal: below 10⁻⁷ keV⁻²cm⁻²s⁻¹.
- Clear strategy for background reduction in surface and background tests.
- Sub-kev axion physics \rightarrow R&D lines to lower the energy threshold.

Thank you

Axions

- Axions are the most elegant solution to the Strong CP problem (why QCD does not seem to break the CP symmetry):
 - Pseudoscalar particles, neutral, practically stable.
- Candidates for both cold and hot dark matter.
- Axion-like particles (ALPs) are predicted by many extensions of the Standard Model
- Relevant axion/Axion-Like Particles parameter space at reach of current and near-future experiments
- New theory scenarios: string theory predicts axions/ALPs with detectable parameters
- Astrophysical hints for axion/ALPs?
 - transparency of the Universe to UHE gammas \rightarrow very light ALPs
 - white dwarf cooling anomaly \rightarrow few meV axions

Axion detection by an helioscope

Production: *Primakoff effect.* Thermal photons interacting with solar nuclei produce axions. **Detection**: *inverse Primakoff* (Sikivie 1983) Axions in a magnetic field convert to photons. Expected x-ray excess when the magnet points to the Sun.

- Conversion probability depends on medium.
- In vacuum coherence is lost for m_a > 0.02 eV.
- In the presence of a buffer gas, the coherence can be restored for a narrow mass range.

CAST: CERN Axion Solar Telescope

Description of CAST:

- Decommissioned prototype LHC dipole magnet. Length = 9.3 m. Field = 9 T.
- Range of movement: 80^o horizontally and ± 8^o vertically.
- Solar tracking possible during sunrise and sunset (2 x 1.5 h per day).
 Detectors since 2010:
- Sunrise: x-ray focusing device + CCD (SDD in 2013, Ingrid in 2014) / Micromegas.
- Sunset: 2 Micromegas detectors.

CAST detectors

CAST-Micromegas at Sunset

Micromegas microbulk detectors

- High power to discriminate x-rays.
- Intrinsic radiopure.
- Shielding techniques applied.
- JINST 9 (2014) P01001.

X-ray telescope + CCD

- Telescope: prototype of ABRIXAS mission.
- CCD: Excellent spatial & energy resolution.
 SN~150 due to simultaneous measurement.
- New J. Phys. 9 (2007) 169.

X-ray telescope + CCD

CAST-Micromegas at Sunrise

CAST Physics Program

1) CAST Phase I, Vacuum

- m_a < 0.02 eV
- $g_{a\gamma\gamma} \lesssim 0.88 \times 10^{-10} \, \mathrm{GeV^{-1}}$
- PRL94 (2005) 121301 & JCAP04(2007)020.

2) CAST Phase II, ⁴He

- P < 13.4 mbar (1.8K), 160 steps
- 0.02 eV < m_a < 0.39 eV
- $g_{a\gamma\gamma} \lesssim 2.2 \times 10^{-10} \text{ GeV}^{-1}$
- JCAP02 (2009) 008.

3) CAST Phase II, ³He

- P < 120 mbar (1.8K), 160 steps
- 0.39 eV < m_a < 1.17 eV
- $g_{a\gamma\gamma} \lesssim 3.3 \times 10^{-10} \text{ GeV}^{-1}$
- PRL 107 (2011) 261302 & PRL 112 (2014) 091302

Parallel searches:

- HE axions: JCAP 1003 (2010) 032.
- 11.4 keV axions from M1 transitions: JCAP 0912 (2009) 002.
- LE (visible) axions: arXiv:0809.4581.
- Constrains on axion-electron coupling: JCAP 1305 (2013) 010

CAST: latest results & current activites

Latest results:

- ³He phase results recently published: PRL 112 (2014) 091302 (only mM).
- Axion mass 0.64 1.17 eV excluded down to ~3.3 × 10⁻¹⁰ GeV⁻¹.
- Paper on the simulation of gas dynamics inside the magnet in preparation.

Current activities:

- Revisiting the vacuum phase with three high performance microbulk detectors.
- Seach of exotic physics (chameleons, paraphotons, low energy axions).

Detector updates:

- An x-ray optics will increase the sensitivity of Sunrise detector.
- InGrid micromegas and Silicon Drift Detectors (SDD) are tested.

IAXO: International AXion Observatory

- 4 orders of magnitude better in S/N wrt CAST, i.e. 1-2 orders in g_{av} .
- New features: toroidal magnet, dedicated optics, low background detectors.
- CAST & ADMX can explore a big part of the axion model region in next decade.
- Potential for new physics: white dwarfs, ALPs, low energy axions...
- Ideas under discussion to explore meV axions (resonant cavities, antenna dishes).
- More details: IAXO-CDR (2014 JINST 9 T05002) & NGAH (JCAP 06 (2011) 013).

Status of IAXO

- 90 signatures. 38 institutions. Enlarged community interested in IAXO physics.
- In International roadmaps of Europe (ASPERA/APPEC, ESPP) & US (Snowmass).
- Conceptual Design: 2014 JINST 9 T05002.
- Letter of Intent presented at CERN-SPSC on 22th Oct 2013: SPSC-2013-022.
- Positive recommendations from SPSC.
- Preparation of a MoU to carry out TDR work. Search for new interested partners.
- Several preparatory activities in parallel for the Technical Design Report (TDR):
 - IAXO-TO: a demonstration coil.
 - **IAXO-X0**: a prototype x-ray optics.
 - IAXO-DO: a low background detector.
 - Pathfinder: a small optics & detector at CAST. The same techniques as for IAXO.

IAXO Magnet

- Large toroidal 8-coil magnet specifically built for axion physics.
- Many technical aspects studied and defined in the CDR.
- Magnetic length: 20 m.
- Bore diameter: 0.6 m.
- IAXO-T0 project to build a test coil.

IAXO magnet concept presented in:

- IEEE Trans. Appl. Supercond. 23 (ASC 2012)
- Adv . Cryo. Eng. (CEC/ICMC 2013)
- IEEE Trans. Appl. Supercond. (MT 23)

IAXO Optics

- Technique of choice: optics made of thin glass substrates coated to enhance reflectivity in the energy regions for axions. Used in NuSTAR/HEFT project.
- Optimization study to maximize the efficiency in the focussing power:
- Diameter: 600 mm. Focal length: 10 m.
- First realistic drawings made.
- New telescope for CAST in construction.

Lawrence Livermore National Laboratory

DTU Space National Space Institute

IAXO detector: Microbulk Micromegas

Why are they used in axion searches?

- High power to discriminate x-rays signals from other type of events.
- Intrinsic radiopure (Astr . Part. 34 (2011) 354).
- Consolidated manufacture (JINST 5 (2010) P02001, JINST 7 (2012) P04007).
- Shielding techniques from low background experiments can be also applied.

Status of Micromegas for IAXO

- Background levels below 10⁻⁶ s⁻¹keV⁻¹cm⁻² obtained in CAST for the first time (2013).
- Levels at 10⁻⁷ s⁻¹keV⁻¹cm⁻² at LSC.
- Roadmap to reach IAXO levels, based on
 - In-situ measurements at CAST.
 - Replica at Canfranc Laboratory (LSC).
 - Geant4 simulations of CAST-MM.

Contribution	Background level in 2-7 keV (counts s ⁻¹ keV ⁻¹ cm ⁻²)	Technique
Gamma flux	~7 x 10 -5	Lead shielding
Muons	2 x 10 ⁻⁶ - > <mark>6 x 10⁻⁷</mark>	Active veto
Al cathode	(5.2 ± 1.2) x 10 ⁻⁷	Cu cathode
Radon	~8 x 10 ⁻⁷	N ₂ flux
CAST-LSC lower limit	1.1 x 10 ⁻⁷	Neutrons? Gas purity?

Summary

In the last 12 years, the CAST experiment

- has put the strictest limit on axion coupling for a wide range of masses and has gained extensive experience on Helioscope Axion Searches.
- has just published the first results of 3He phase (PRL 112 (2014) 091302): $g_{avv} \lesssim 3.3 \times 10^{-10} \text{ GeV}^{-1}$ (95% CL) for 0.64 eV < m_a < 1.17 eV.
- is revisiting the vacuum phase to increase the sensitivity and explore other exotica like solar chamaleons, paraphotons, improve the LE setup.

The future is the International Axion Observatory (IAXO) which

- will improve on CAST results more than one order of magnitude.
- will use a dedicated magnet, large area optics and low background detectors.
- can explore a big part of axion models in next decade together with ADMX.
- has published its LoI (SPSC-2013-022) & CDR (2014 JINST 9 T05002).
- develops several activities for the TDR: test coil, optics, detectors,...

Back-up slides

The detection probability

Axion to photon conversion probability

$$\boldsymbol{P}_{a \to \gamma} = \left(\frac{\boldsymbol{B}\boldsymbol{g}_{a\gamma}}{2}\right)^2 \frac{1}{\boldsymbol{q}^2 + \Gamma^2/4} \left[1 + \boldsymbol{e}^{-\Gamma L} - 2\boldsymbol{e}^{-\Gamma L/2} \cos(\boldsymbol{q}L)\right]$$

2

L = magnet lenght, Γ = absorption coefficient

Coherence condition:
$$q L < \pi$$
, $|q| = \frac{m_a^2}{2E}$

For CAST phase I (vacuum), coherence is lost for $m_a > 0.02 \text{ eV}$

With the presence of a buffer gas, the coherence can be restored for a narrow mass range

$$qL < \pi \Rightarrow \sqrt{m_{\gamma}^2 - \frac{2\pi E_a}{L}} < m_a < \sqrt{m_{\gamma}^2 + \frac{2\pi E_a}{L}}$$

Axion as Dark Matter candidate

Non relativistic

COLD AXIONS

- Axions are produced in the early Universe by a number of processes:
 - Axion realignment
 - Decay of axion strings
 - Decay of axion walls
- Axion mass giving the right CDM density? Depends on cosmological assumptions:
 - "classical window": around 10⁻⁵-10⁻³ eV
 - "anthropic window" ~ much lower masses possible
 - Other subdominant CDM / non standard scenarios
- Thermal production
 - Axion masses ma > ~0.9 eV gives densities too much in excess to be compatible with latest CMB.

Hannestad et al, JCAP 08 (2010) 001

What is the motivation of axions?

- Most compelling solution to the Strong CP problem of the SM.
- Axion-like particles (ALPs) predicted by many extensions of the Standard Model (like the string theory)
- Axions, like WIMPs, may solve the Dark Matter (DM) problem for free. (i.e. not an ad hoc solution to DM).
- Astrophysical hints for axion/ALPs?
 - Transparency of the Universe to UHE gammas.
 - White dwarfs anomalous cooling point to few meV axions
- Relevant axion/ALP parameter space at reach of current and near-future experiments
- Still too little experimental efforts devoted to axions when compared to WIMPs.

CERN SPSC recommendations (Jan 2014)

The Committee **recognizes the physics motivation** of an International Axion Observatory as described in the Letter of Intent SPSC-I-242, and considers that the proposed setup makes appropriate use of state-of-the-art technologies i.e. magnets, x-ray optics and low-background detectors.

The Committee **encourage**s the collaboration to take the next steps towards a **Technical Design Report**.

The Committee **recommends** that, in the process of preparing the TDR, the possibility to **extend the physics reach** with additional detectors compared to the baseline goal should be investigated. The collaboration should be further strengthened.

Considering the required funding, the SPSC recommends that the R&D for the TDR should be pursuit within **an MOU** involving all interested parties.

IAXO in astroparticle roadmaps

• ASPERA/APPEC Roadmap acknowledges axion physics, CAST, and recommends progress towards IAXO.

"...A CAST follow-up is discussed as part of CERN's physics landscape (new magnets, new cryogenic and X-ray devices). The Science Advisory Committee **supports** R&D on this follow up, as well as smaller ongoing activities on the search for axions and axion-like particles."

C. Spiering, ESPP Krakow

- Important community input in the European Strategy for Particle Physics
- Presence in the Briefing Book of the ESPP, which reflects also APPEC roadmap recommendations.
- ESPP recommends CERN to follow APPEC recommendations.
- Important effort in relation with US roadmapping (Snowmass, and P5 process). Snowmass reports speak very favorably of axion physics and IAXO.

Parameter	Units	CAST-I	IAXO Nominal	IAXO Enhanced
B	Т	9	2.5	2.5
L	m	9.26	20	20
A	m^2	2×0.0015	2.3	2.3
f_M^*		1	300	300
b	$\frac{10^{-5} \text{ c}}{\text{keV cm}^2 \text{ s}}$	~ 4	$5 imes 10^{-3}$	10^{-3}
ϵ_d		0.5 - 0.9	0.7	0.8
ϵ_o		0.3	0.5	0.7
a	cm^2	0.15	8 imes 0.2	8 imes 0.15
f_{DO}^*		1	17	60
ϵ_t		0.12	0.5	0.5
t	year	~ 1	3	3
f_T^*	-	1	3.5	3.5
f^*		1	2×10^4	6×10^4

Table 3: Values of the relevant experimental parameters representative of IAXO, both the *nominal* and *enhanced* ones, based on the considerations explained in section 4. They are compared to the ones representing the CAST vacuum phase result (CAST-I) [59]. Numbers shown for the figures of merit (equation 11) are relative to CAST-I, i. e. $f^* = f/f_{CAST}$, and are approximate.

	Years 1 2		3			4			5			6	6					
	Months	3	6 9	9 12	15	18 2	21 24	27	30	33 36	39 4	2 45 4	48 51	I 54	57	60 63	66	69 72
	Magnet	_			_			_										
	Design T0																	
	T1-T8							L										
	Demo coil																	
	Production				L										_			
	Integration						_											
	Services				L			L								н.		
	Optics	_		_			_		T	_	1 1		-	T	_	-		
	Optic design study		۰.		L		_											
	Prototype construction				L		_					+	+			+		
	Calibration				E		_						_			_		
	Finalize design			_				L					+			+		
	Build assembly machines				⊢			⊢					+			+		
	Build coating facilities				H			H										
	Slump glass				⊢			Г					÷.			t.		
	Deposit coatings				F		+									i.		
	Assemble optics				F		+	F					÷					
	Calibrate optics				E			E			iΠ		Т			E		
	Installation				t								Г					
	Detectors							1										
	Prototype						Т	Г					Т			Т		
	Construction (incl. spares)				Г													
	Installation & commissioning																	
			\leftarrow			≯												
TDD - proportory optivites 1			•	TC	` ¬	· .	4							>				
• TUK + preparatory activites: 1.	5 years.			IL	νK			_		_			•					
Construction: 2 5 years								С	Or	nst	ruc	ctic	n					
Integration & comissioning: 2 4	vears																	
	years.											(Co	mi	iss	sio	ni	ng

Total: 6 years.

IAXO costs

Item	Cost (MCHF)	Subtotals (MCHF)	
Magnet		31.3	
Eight coils based assembled toroid	28		
Magnet services	3.3		
Optics		16.0	
Prototype Optic: Design, Fabrication, Calibration, Analysis	1.0		
IAXO telescopes (8 + 1 spare)	8.0		
Calibration	2.0		
Integration and alignment	5.0		
Detectors		5.8	
Shielding & mechanics	2.1		
Readouts, DAQ electronics & computing	0.8		
Calibration systems	1.5		Laboratory engineering,
Gas & vacuum	1.4		maintenance & operation
			and physics exploitation
Dome, base, services building and integration		3.7	not included
Sum		56.8	

Table 5: Estimated costs of the IAXO setup: magnet, optics and detectors. It does not include laboratory engineering, as well as maintenance & operation and physics exploitation of the experiment.

Micromegas for axion searches

It is an amplification structure used as readout in a Time Projection Chamber (**Y. Giomataris, NIMA 376 (1996) 29**).

- Excellent energy resolution (**12% FWHM at 5.9 keV**).
- High power to discriminate x-rays signals from other type of events.
- Intrinsic radioupure (S. Cebrian et al, Astr. Part. 34 (2011) 354).
- Consolidated manufacture (microbulk technique) & stable in time (S. Adriamonje et al., JINST 5 (2010) P02001).

Micromegas for axion searches

It is an amplification structure used as readout in a Time Projection Chamber (Y. Giomataris, NIMA 376 (1996) 29).

- Excellent energy resolution (**12% FWHM at 5.9 keV**).
- High power to discriminate x-rays signals from other type of events.
- Intrinsic radioupure (S. Cebrian et al, Astr. Part. 34 (2011) 354).
- Consolidated manufacture (microbulk technique) & stable in time (S. Adriamonje et al., JINST 5 (2010) P02001).

Lowering the energy threshold of CAST

Physics motivation:

- In non-hadronic axion models, the Sun produces axions by BCA processes.
- The expected axion flux peaks at subkeV energies.

Is it feasible for x-ray detectors?

- Evident for CCD & SDD.
- To be verified by MM & Ingrid.

Lowering the energy threshold of CAST

R&D on this direction for Micromegas:

- New thin windows for CAST detectors.
- Autotrigger electronics AGET.
 (S. Anvar et al, NSS/MIC/RTSD IEEE 2011)
- New analysis based on x-rays calibrations.
- Neon-based mixture: higher gain
 (F.J. Iguaz et al, JINST 7 (2012) P04007).

Micromegas, J. G. Garza et. al, RD51 Collaboration Meeting (29 Oct. 2014)