

भाभा परमाणु अनुसंधान केंद्र BHABHA ATOMIC RESEARCH CENTRE

Reactive Ion Etching of GEM foils

Avinash Joshi¹, L. M. Pant² & A. K. Mohanty²

¹Alpha Pneumatics, Thane, Maharashtra

²Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai

The Triple GEM for the CMS Muon System

Rate capability : 10^{5} Hz/cm² Spatial/Time resolution: ~ $100 \mu m$ / ~ 4-5 ns Efficiency > 98% Gas Mixture: Ar-CO₂-CF₄ (non flammable mixture)

 Combine triggering and tracking functions
 Enhance and optimize the readout (η-φ) granularity by improved rate capability

GEM foils developed using PCB manufacturing techniques

Large areas ~ Im x 2m with industrial processes (cost eff.)

 Each foil (perforated with holes) is 50µm kapton sheet with copper coated sides (5µm)

Typical hole dimensions : Diameter = 70µm, Pitch = 140µm,

 Long term (10 years) operation experience in Compass, and more recently LHCb and TOTEM

Present GEM fabrication process

- Present process of GEM foils making involves Photolithography and Chemical / Electrochemical etching of copper and polyamide layers
- Uniformity and reproducibility of etching are governed by :
 Rate of a chemical reaction : function of ratio of activities (Concentration)

Transport factor

Activity at reaction surface

 ratio of partial pressure of a reactant reaching the surface through boundary layer to the partial pressure of reactant in gas mix

3

action surface : function of diffusivity of Reactant Species (inward) and Products Species (outward) through the boundary layer

of reactants to products

Flow of reactants & products : across boundary layer is controlled by the thickness of boundary layer.

Disadvantages of Liquid Etching

- Reactant and products are in liquid state
- Reaction rates are highly sensitive to temperature and concentration of reacting species
- Solvent is needed to activate and transport the reacting species
- Boundary layer is thick and the layer thickness is few microns
- The supply of the reacting species to the reaction surface becomes lesser as the holes become deeper
- This problem becomes very prominent when hole diameter is nearer to boundary layer thickness
- Inner surface of the etched hole has undercutting, because of isotropicity

Plasma Etching : Advantages over Liquid Etching

- Gas Phase reaction clean and precise
- Features having Very Large aspect ratio can be etched
- Photo-resist mask can be removed by Ashing under O₂ plasma
- Instant Change of etchants by switching gases through MFC control channels
- Galvanic protection possible to avoid over-etching of front copper layer.
- Etch process can be sequenced and programmed to etch multiple layers, in succession
- End point detection by OES (optical emission spectroscopy) is possible
- Surface passivation of exposed etched surface by oxygen plasma
- Excellent control over Differential etch rate between Copper and Polyimide
- DC bias : controlled ion energy for directional etching
- Very little undercutting
- It is possible to etch copper and Kapton in situ

Plasma Etching : Process variables

1) RF Power density

- 2) Gas Mixture component types
- 3) Gas mixture Ratio
- 4) Pressure
- 5) Substrate Temperature
- 6) Electrode spacing : 19 mm with GEM foil at ground

Plasma Etching at Alpha Pneumatics, Thane Factory

RF Plasma at 0.4 to 1.0 Torr : 19 mm electrode spacing

with O₂ (100%)

with SF₆ (100%)

SEM photograph of plasma etched silicon grooves with large aspect ratio (L/a)

Etch rate of polymide versus SF₆ concentration in O₂

Ref : "Dry Etching of Polyimide in O₂-CF₄ and O₂-SF₆ Plasmas" Guy Turban and Michel Rapeoux, Journal of Electrochem. Soc. Solid State Science and Technology, p 2231-2236, Nov. 1983

Fig. 3. Etch rates of Kapton in O_2 -Cr₄ and O_2 -Sr₆ discharges. Pressure = 0.2 Torr, sample area = 4.5 cm², frequency = 13.56 MHz.

Etch rate of polymide versus SF₆ concentration in O₂

Ref : "Dry Etching of Polyimide in O₂-CF₄ and O₂-SF₆ Plasmas" Guy Turban and Michel Rapeoux, Journal of Electrochem. Soc. Solid State Science and Technology, p 2231-2236, Nov. 1983

Etching Parameters

Gas Pressure : 0.6 torr

- For Polyimide (Kapton)
 - a) SF₆ : 6.0 b) O₂ : 24. c) RF Power Density : 0.6 → d) Maximum Etch Rate Achieved : 0.3

: 6.0 SCCM (20%) : 24.0 SCCM (80%) : 0.6 to 1.2 W/cm² : **0.3 μm/min**

For Copper

a) SF₆
b) O₂
c) RF Power Density
d) Maximum Etch Rate Achieved
e) Substrate Temp
f) Duration

: 24.0 SCCM (80%) : 6.0 SCCM (20%) : 0.6 to 2.0 W/cm² : **0.05 μm/min** : 25^oC/Start, 35^oC/End : 10.0 min

Rejected Polyimide foil from CERN with Cu already patterned at 70 µm diameter

~ 18 μm deep trench in Polyimide in 48 minutes under SF₆ (20%) + O₂ plasma

$\sim 24~\mu m$ deep trench in Polyimide in 60 minutes under SF_6 (20%) + O_2 Note , there is no undercutting

~ 30 μm deep trench in Polyimide in 60 minutes under SF₆ (20%) + O₂ plasma

Polyimide etched to a depth of 50 μm in 120 minutes under SF₆ (20%) + O₂ plasma

EDAX measurement of surface chemistry showing presence of Cu and Cr in the bottom layer

EDAX measurement of surface chemistry showing absence of Cr in the bottom layer

reverse concentration : SF_6 (80%) + O_2 (20%) flash for a couple of minutes

Meet, VECC Kolkata, 29 Oct 2014

Etching of Copper on Polyimide SF₆ (90%) + O₂

5 μ m etching of Copper on Polyimide (5000 X) SF₆ (90%) + O₂

Cl₂ as an alternative to SF₆

1) Cl_2 gives better results than SF_6

2) With $SF_6 + O_2$ mixture, higher surface temperature (214°C) is required to evaporate the products

3) Etch rates of 0.5 μ m/min (x10)have been achieved under Cl₂ + O₂ plasma and UV irradiation

Artwork and Mask making : Image of GEM foil mask

Artwork and Mask making : 1/100th part of artwork

٠

٠

Drawing prepared in Auto Cad 2004 platform • Front and Back side contact /proximity masks • Total 591000 elements per mask Single reticule of 185 mm x 175 mm size

Present Status :

- 1) Artwork prepared by us, which has been okayed by CERN
- 2) We are in touch with emulsion mask makers from US and commercial negotiations are going on to prepare emulsion and chrome type contact masks.

Summary and Outlook

- An etch rate of 0.5 μ m/min for Polymide and 0.05 μ m/min for Cu has been demonstrated
- Possible modifications / Etchants for future RIE processes for GEM
- Gases : SF₆, CF₄, O2, CH₂FCF₃ (R134a), Cl₂, Argon and Nitrogen, Organometallics
- SF₆ and CF₄ more suitable than R134a as Fluorine yield is significantly higher
- Cl₂ and O₂ plasma etch copper but does not affect Polymide
- SF₆ and O₂ plasma etch PMMA but does not affect copper but etch rate is very poor
- Power density of 0.5 Watt/cm² is adequate
- CCP or ICP methods can be used for large area
- Process of RIE under UV radiation to facilitate CuClx evaporation
- We are using CCP technique (@13.56 MHz)

References

 "Dry Etching of Polyamide in O2-CF4 and O2-SF6 Plasmas" Guy Turban and Michel Rapeoux, Journal of Electrochem. Soc. Solid State Science and Technology pp2231-2236 Nov. 1983

 Dry Etching of Copper Using Plasma" by Kejun Xia Semiconductor TCAD Lab. Auburn University, AL, Oct 19, 2003

3)"Plasma etching of copper films at low temperature" P.A.Tamirisa et al, Microelectronic Engineering, Volume 84, Issue 1, January 2007, Pages 105–108

Acknowledgements

• Dr. Padmakar Tillu for providing high purity SF₆ gas

• Dr. S.C.Purandare (DCMP – TIFR) for SEM studies

• Shivendu (ASD-BARC) for optical images