What we have learned in the
MAMMA?* R&D activity

*) Muon Atlas MicroMegas Activity



The beginning ...

The ATLAS micromegas project started in 2007 after a brain-storming meeting
organized at CERN by the ATLAS Muon System. In this meeting loannis Giomataris
presented the micromegas concept as a potential detector technology for a future
upgrade of the ATLAS muon system.

It is fair to say: Not too many people believed in it at this time ... and it took a lot of
work to convince my colleagues in ATLAS of the contrary

=  “Too many sparks ...”
=  “How to scale a detector of the size of a hand to several square meters ?”

However, a few of us saw a number of promising features of this technology, in
addition to their excellent (not only high-rate) performance that had, by this time,
already been proven, e.g., in COMPASS.

As particularly strong points we saw
= Potential for industrial production
= Relatively simple construction
= Relatively low costs

So we started the MAMMA R&D activity to develop micromegas detectors for the
New Small Wheels of the ATLAS detector.
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ATLAS Small Wheel upgrade project

Today’s SWs:

IWAD Kolkata, 28/20/2014

J. Wotschack (CERN)

The LHC upgrade foresees a step-
wise luminosity increase of factor
5-10 a starting in 2019

Replace the existing Small
Wheels equipped with MDTs
(drift tubes) and Cathode Strip
Chambers (CSC) in the inner
(high-rate) region. These
detectors were designed to work
up to the LHC design luminosity
of L= 1x103* cm2s?

New Small Wheels (NSW) should
be able to cope with this rate
increase and add trigger capacity

They are to be installed in ATLAS
in the LS2 (2018/19)



Detector requirements for the NSW

High rate capability: 10-15 kHz/cm? (n, v, p, 1) at
small radii

Spatial resolution: <100 um independent of track
angle

Efficiency: 295% per plane

Trigger capability (25 ns bunch identification)
Radiation tolerance: (100 kRad/year) for 210 years

Affordable costs



Early performance studies (2007-2009)

= Allinitial performance studies were
done with ‘standard’ micromegas
chambers

= P1 was a standard bulk MM (40 x 50
cm?) with several strip patterns
(250 um to 2 mm pitch) and strip
lengths of 250 and 400 mm

= |t was tested extensively with
hadrons in the H6 test beam at CERN
but also with gammas using an >>Fe
source

= We used different gas mixtures,
initially Ar:CF,:iC,H,, (88:10:2,
95:3:2), moved later to Ar:CO,
(80:20, 85:15, 93:7)
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2008: Demonstrated performance

Ar:CF,:iC,H,, (88:10:2)

= Standard micromegas (P1)

= Safe operating point with
efficiency >99%

= @Gas gain: 3-5x 103
= Very good spatial resolution
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Conclusions by end of 2009

= Micromegas (standard) perform very nicely
= Clean signals

= Stable operation for detector gains of 3—5 x 103 with pure
Ar:CO, gas mixtures

= Efficiency of 99%, limited by the dead area from pillars

= Required spatial resolution of 100 um can easily be achieved
with strip pitches between 0.5 and 1 mm

* Timing performance could not be measured with the ALTRO
electronics used at that time

= Sparks are a problem for the operation at the LHC

= Sparks lead to a partial discharge of the amplification mesh
=> HV drop & inefficiency during HV ramping up

* The good news: no damage, despite many sparks
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2010: Making MMs spark resistant

Tested several protection/suppression schemes

A large variety of resistive coatings of anode strips

Did not manage to find a safe solution; damage after few hours or
days (sometimes minutes) of operation

Problems cured by adding an insulating layer: R11 ++
Double/triple amplification stages to disperse charge, as used
in GEMs (MM+MM, GEM+MM)

Settled finally on a protection scheme with resistive
strips
Tested the concept successfully in the lab (>>Fe source,

Cu X-ray gun, cosmics), H6 pion & muon beam, and with
2.3 MeV and 5.5 MeV neutrons



Local damage of resistive layer

= Resistive layer is locally damaged, induced
by some large charge

(Resistive paste not very homogeneous,
manually applied)

= Regions with lower resistance (or some
defects) are affected first.

= Once the resistive layer is locally damaged,
sparks with higher currents develop at the
m affected pad

[ R3 with resistive paste on top

Resistive .
of readout strips and metal

| | aste n n | | [ ] n | | n n n n n | | | | n n n | | | | .
v 128 pm msuIator ] plating to protect the surface

- < of the resistive paste
al 200 ur

Cu readout strips
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Resistive-strip protection concept

Mesh support pillar Resistive strip
/ 0.5-100 MQ/cm

PCB

N . \
Insulator ? Cu readout strip

= A layer of resistive strips, separated by
an insulating layer, above the readout
strips (NIM A 640 (2011) 110-118) makes
sparks largely inoffensive

=  With a strip resistivity of 10-20
MOhm/cm spark currents are reduced
by about three orders of magnitude

= Sparks are quickly guenched

= The strip pattern constrains sparks to
regions of typically one or two strips

Embedded resistor Resistive Strip
50 MQ 5mm long 0.5-100 MQ/cm

Signal (V)
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\ \

GND Copper readout strip
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Large number of resistive-strip
detectors tested

= Small chambers with 9 x 9 cm?
active area

= Large range of resistance values
= Number of different designs

= (@Gas mixtures

= Ar:CO, (85:15 and 93:7)
= (Gas gains

= 2-3x10%

= 10%for stable operation

R16, first chamber with 2D readout
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Small resistive-strip detectors
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Spatial resolution & efficiency for R12 (250 pm strips)
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Analysis of data taken in July 2010
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Spatial resolution with 250 um strip: =30 um with Ar:CO, (93:7), even better with 85:15
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Peak value (arb. units)
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Rate in NSW at HL-LHC

R11 - 8 keV Cu X-ray peak vs rate (560 V, Ar:CO, 85:15)

Note: 8 keV = 6—7 x MIP
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Rate capability of resistive-strip MMs

Rate capability has
been extensively
studied using Cu
X-ray beams up to
MHz/cm?

Small double-gap
MM with resistive
strips has been
successfully
operated during
one year in front
of the e/m
calorimeter of
ATLAS with rates
up to 150 kHz/cm?



Test beam
Nov 2010

Four chambers with
resistive strips aligned
along the beam

NEW: Scaleable Readout
System (SRS) — RD51 (H.
Muller at al.), a major
step forward

APV25 hybrid cards

Frascati, 7 Dec 2011

Joerg Wotschack (CERN)
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APV25 data — two track example

apv_qt:mm_strip {apv_q*(apv_id==4 && mm_strip!=99 && apv_evi==59)}
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and a two-track event
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2D readout (R16 & R19)

Readout structure that gives two readout coordinates from the same gas
gap; crossed strips (R16) or xuv with three strip layers (R19)

Several chambers successfully tested

.................. Mesh
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R16 x-y event display (>>Fe y)
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R19 with xuv readout strips

MeESh « ¢ = « s s s s s s s = = = = = Tested two chambers with same

readout structure (R19M and R19G) in
a pion beam (H6) in July

Clean signals from all three readout
coordinates, no cross-talk

Strips of v and x layers well matched,

= X strips parallel to R strips u strips low signal, too narrow
Excellent spatial resolution, even with
v and u strips

R stri .
strips v strips

u strips

X strips

= y,v strips +60 degree

R19 R v u X “E .
70:_ R19M - R19G 2 aat 139412
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so;—
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o 30—
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20—
Q collected (rel.) 0.84 0.3 1 102—
O-EA = ‘3l5‘ == E’Sl = ‘-2‘4’;5"1 2 115’_‘A = l1A mlH-OI.?SI ‘ 0

Hit position distance: R19M - R19G (mm)
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Ageing

Radiation [Energy |Integrated
charge

Cu X-rays 8 keV
Reactor 5-10 meV
neutrons

Gamma 1.17 &
(°9Co) 1.33 MeV
Alpha 5.64 MeV
particles in

gas

IWAD Kolkata, 28/20/2014

5 years HL-
LHC
equivalent

10 years HL-
LHC
equivalent

10 years HL-
LHC
equivalent

5 x 108 sparks
equivalent

eV|dence
for ageing

No
evidence
for ageing

No
evidence
for ageing

No
evidence
for ageing

J. Wotschack (CERN)

Extensive tests at CEA
Saclay with two almost
identical 10 x 10 cm?
resistive MMs (R173,b;
one irradiated, one used
as reference)

No significant difference
between irradiated and

non-irradiated detector

observed

Plans: large-area
exposure in GIF++
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Conclusion on resistive MMs by 2012

The addition of the spark protection layer
solves the spark problem

Resistive-strip MMs show the same excellent
performance as standard MMs

No signs of ageing have been observed for
exposures equivalent to 10 years of HL-LHC
operation

A small double-gap MM operated stably in
ATLAS at 150 kHz/cm? for a full year



Detector & performance optimization



2"d coordinate

= Although 2D readout with resistive-strip MMs had been shown to
work very well (this type of MMs is now a standard item of the
CERN PCB workshop) we chose not to follow this road for the ATLAS
NSW MM. We will use stereo strips instead.

= Difficult geometry for x,y-strip connection routing without creating
dead areas

= Smaller strip (= electronics channel) count with stereo strips;
symmetric small-angle stereo strips contribute also to the precision
coordinate, with the same precision as eta strips

= Larger signals (no charge sharing)
= Smaller number of ghost hits (limited narrow bands)
= First implementation in MMSW chamber with £1.5° stereo angle

= Test beam results show a 2" coordinate spatial resolution of 2.2 mm
(see talk in WG1).



Inclined tracks (LTPC mode)
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Spatial resolution rapidly decreases
for inclined tracks if the cluster
centroid or charge weighting is used

Measuring the arrival time of the
signals opens a new dimension and
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ULTPC mode

Effect on uTPC

Reco Angle [°]
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MMs in magnetic field

Two test beam campaigns in magnetic
field so far

= 2012 in the H2 beam at CERN (120
GeV pions) showed

= our MMs work well in magnetic field,;
measured up to 1 TeV

= Qur gas/operating point may not be
optimal for magnetic field because of
the large Lorentz angle

= 2013 at DESY (5 GeV electrons)
consolidated the H2 results

= Nov/Dec 2014 next run in H4 in the
Goliath magnet in the RD51 area

MMs in_\“\iSY magnet _j

IWAD Kolkata, 28/20/2014 J. Wotschack (CERN)
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=  Data and simulation agree well

=  Lorentz angle (LA) is close to 30° for Ar:CO, (93:7) and
B=05T

= LA leads to bias in cluster position and width

=  Position bias recovered by arranging MMs in back-to-
back configuration

=  Biasin cluster size creates singularities in uTPC
reconstruction algorithm; recovered by combination of
charge weighting and uTPC method

IWAD Kolkata, 28/20/2014 J. Wotschack (CERN)
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Some recent results from the analysis
of high statistics test beam runs



Efficiency of Tmm5 in x and y
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=  Results from T9 test beam (August 2014)

= High statistics data with 10 x 10 cm? MMs with
2D readout with 250 um strip pitch (courtesy of
E. Oliveira). Pillar distance: 2.5 mm

=  Select single tracks events in band of pillars and
look at cluster position residuals in one MM
with respect to the track reconstructed in the
other three MMs

= Look at reconstructed track angle using two
close-by MMs

Angle of TmmS56 track [°]

[mm]

4
[mm]
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Conclusion

Over the last seven years we learned
= that MMs are very nice and robust detectors, no ageing observed
= how to work with them

We learned that MM need protection against sparks if operated in a
high-rate LHC like environment and we found a solution

We learned how to make large MMs of several m?

= We still have to learn how to assemble MM detectors in such a way
that we do not need to open detectors too often

We learned how to achieve the required track reconstruction
precision using the uTPC mode

What still needs to be done (apart from building the detectors) is to
optimize the operating conditions for best performance in magnetic
field, finding a compromise between stable operation, good gain,
good mesh transparency, and small Lorentz angle.



