

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Charging up effects in the triple GEM detector

Bartosz Mindur, Władysław Dąbrowski, Tomasz Fiutowski, Alicja Zielińska

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

IWAD and 14th RD51 Collaboration Meeting Kolkata, India, 27-31 October 2014

Measurement setup

- Data Acquisition (DAQ) system
- Triple GEM detector

Measurements results for Triple GEM – VERY PRELIMINARY

- Global charging-up effect
- Local charging-up effect
- Charging-up of the readout structure
- Discharging

Main components of the setup:

- $\bullet~$ Triple-GEM detector with active area $10 \times 10 \, {\rm cm}^2$ and two-dimensional readout structure.
- Dedicated electronic readout system.
- ⁵⁵Fe source (7.4 GBq) set in 7 cm distance to detector window.
- Aluminium mask with 9 holes, each one 1 cm in diameter (for local charging-up measurements).

Mindur B. et al. JINST, 8 T01005, 2013.

Components of the system:

- Readout system comprise two DAQ boards (one per coordinate).
- Each DAQ board consists 4 GEMROC ASICs, ADC and FPGA minimodule.
- One coordinate is equipped with 128 readout channels.
- Host PC equipped with C++ based software for communication with DAQ board and preprocessing of incoming raw data.

- 32 channels in one ASIC, each channel is split into: slow (energy) and fast (timing) sub-channel.
- Switchable gain (2.5 mV/fC for low gain, 5 mV/fC for high gain for slow channel) and signal polarity selection, input charge 0-500 fC.
- Derandomization of data and zero supression in the token-based readout.
- Self triggering mode readout initiated by the input signals.
- Noise defined as the ENC below 0.5 fC for timing and 0.43 fC for energy sub-channel.
- Minimum discrimination threshold 2.5 fC input equivalent.

Fiutowski T. IEEE Nuclear Science Symposium Conference Record, pages 1540–1544, 2011. 🛓 👘 🚊 🕤 🔿

GEM detector parameters

- Active area $10 \times 10 \text{ cm}^2$
- 3 mm drift gap
- 2D cartesian readout structure 256 × 256 orthogonal readout strips (128 × 128 readout channels)
- detector flushed with Ar/CO₂ (70/30%) gas mixture
- Gas gain $\sim 5 \times 10^3$ @ 3,950 V
- Gas flow around one detector volume per 4 h

Cartesian readout structure

- Pitch $\sim 400 \,\mu m$.
- Top strips width 80 μm.
- Bottom strips width 340 μ m.
- Kapton layer thickness 50 μm.

Charging-up and discharging - presentation of the results

Presentation of the results

- Charging-up and discharging effects shown for three **GEM foils together** with readout structure (cumulative effect).
- Charging-up and discharging effects shown for three GEM foils (readout excluded) as a total charge recorded on the readout structure (top and bottom strips).
- Charging-up and discharging effects shown only for the readout structure (GEM foils excluded), for bottom (RelativeGain_{Bottom} - RelativeGain_{Sum}) and top (RelativeGain_{Top} -RelativeGain_{Sum}) strips.

Intensity map for global charging-up mesurements. The whole detector area illuminated with non-uniform intensity.

Measurement conditions

- Fe-55 source.
- Measurement time $\sim 6.7\,h.$
- Temperature and atmosheric pressure monitoring.

Charging-up effect for **three GEM foils** for whole detector area (red line) and for three chosen detector locations (around 41 mm^2 each one).

Cumulative charging-up effect for three GEM foils and readout structure.

Bartosz Mindur (AGH)

- Relative gain change for GEMs is 54 % for maximum rate (25 $\rm Hz/mm^2).$
- Relative gain change for cumulative effect for top strips is lower then for bottom strips.
 - For top strips is around 22 % (at 25 Hz/mm²).
 - For bottom strips is around 100% (at 25 Hz/mm^2).

Measurement conditions

- Fe-55 source.
- Total measurement time 12 h.
- Performed simultaneously for different detector locations at different rates.
- Aluminium mask with nine holes, each one covered with aluminium absorbers of different thickness.

• Temperature and atmosheric pressure monitoring.

Charging-up effect for three GEM foils at 5 different rates.

Charging-up effect for three GEM foils at 5 different rates.

Cumulative charging-up effect for top strips and GEM foils.

Cumulative charging-up effect for top strips and GEM foils.

Cumulative charging-up effect for bottom strips and GEM foils.

Cumulative charging-up effect for **bottom strips** and GEM foils.

Charging-up time calculated for the highest rate $(176 \, Hz/mm^2)$ and the lowest rate $(0.7 \, Hz/mm^2)$ for three GEMs (sum for top and bottom).

Dependence of the rise time and relative gain change on rate for **three GEMs** (sum for top and bottom).

Rise time - defined for 95 % of the maximum value.

Bartosz Mindur (AGH)

Dependence of the rise time and relative gain change on rate for **three GEMs** (sum for top and bottom).

Rise time - defined for 95 % of the maximum value.

- Relative gain change for GEMs is 67 % for maximum rate $(176\,Hz/mm^2)$ and 23 % for the lowest rate (0.7 Hz/mm^2).
- Relative gain change for cumulative effect for top strips is around 23 % and almost 120 % for bottom strips (at $176\,Hz/mm^2).$
- $\bullet\,$ Charging time is longer for lower rates (around 600 \min at $0.7\,Hz/mm^2),$ for maximum rate is around 120 $\min.$

Charging-up of the readout structure for bottom (solid lines) and top (dashed lines) strips.

Bartosz Mindur (AGH)

Rate 176 Hz/mm²

Dependence of the rise time and relative gain change on rate for bottom strips.

Rise time - defined for 95 % of the maximum value.

Dependence of the rise time and relative gain change on rate for bottom strips.

Rise time - defined for 95 % of the maximum value.

- Relative gain change for the readout structure is around 50 % for maximum rate $(176\,Hz/mm^2)$ and 6 % for the lowest rate (0.7\,Hz/mm^2).
- Charging time for readout structure is shorter than for GEMs charging-up effect, equals around $6 \min at 176 \, Hz/mm^2$),

Cumulative discharging curves (top, bottom) and sum $- 176 \, \text{Hz/mm}^2$.

Cumulative discharging curves (top, bottom) and sum $- 176 \, \text{Hz/mm}^2$.

Discharging curves for readout structure.

• □ ▶ • • □ ▶ • • □ ▶

Charging-up for three GEM foils (readout structure excluded)

- The largest relative change in gain (67 %) for the highest rate (176 Hz/mm^2) and the lowest around 23 % at 0.7 Hz/mm^2 .
- The longest charging time (around 10 h) is for the lowest rate (0.7 Hz/mm^2) , while charging time for the highest rate is around 2 h.

Charging-up of the readout structure

- The smallest relative change in gain (6 %) for the lowest rate (0.7 Hz/mm^2) and the largest (50 %) at the maximum rate (176 Hz/mm^2).
- The longest charging time (492 min) for the lowest rate (0.7 Hz/mm²) and the shortest (6 min) at 176 Hz/mm².

Discharging – measured at $176 \, \text{Hz}/\text{mm}^2$

- Discharging time only for GEM foils is over a dozen hours.
- Discharging time for readout structure is around 14 min.

Future plans

- Further measurement and data analysis in order to understand all the features (especially gain variation on the readout structure).
- We are also focused on preparation of good parametrization factors which can be used for (semi-)online gain correction.
- We are planning the measurements with much higher rates by employing an X-ray tube.

Acknowledgements

 We thank the RD51 collaboration (especially L. Ropelewski) for its support and providing us with the GEM detector.

Thank you for your attention!