

G. Felici for the FE-LNF-TO team

Partially supported by the Italian Ministry of Foreign Affairs under the Program of Great Relevance PGR-00136

Beijing Electron Positron Collider-II (BEPCII)

2008: test run

2009 - now: BESIII physics run

Kolkata - 31 Oct 2014

The **BESIII** Collaboration

BESIII Detector

CSI calorimeter Precision tracking Time-of-flight + dE/dx PID

The detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

4

BEPCII storage rings

Beam energy: 1.0-2.3 GeV **Design Luminosity:** 1×10³³ cm⁻²s⁻¹ **Optimum energy:** 1.89 GeV **Energy spread:** 5.16 × 10⁻⁴ No. of bunches: 93 **Bunch length:** 1.5 cm Total current: 0.91 A **Circumference**: 237m

Achieved luminosity: 0.7 × 10³² cm⁻²s⁻¹@3770MeV

BESIII data set

- $4100 \pm 4400 \text{ MeV}, 0.5 \text{ ID} = \text{Coarse sca}$
- 3850 ÷ 4590 MeV: 0.5 fb⁻¹ fine scan

BESIII Inner Tracker: MDC aging problems

Gain change from 2009-2014 with Bhabha events

Compared with 2009, now the gas gains of first 5 layers decrease about 29% —14%

- The gains of the first 10 layers have an obvious decrease
- The gains of the layers in the outer chamber have nearly no change

BESIII Inner Tracker: MDC aging problems

Charge accumulation on INNER MDC

- accumulated charge evaluated by integrated dark currents on each wire
- total accumulated charge on first layer at 100mC/cm
- in the last two years the accumulated charges are at lower levels

CGEM detector for BESIII

- Three active layers
- Active area
 - L1 length 532 mm
 - L2 length: 690 mm
 - L3 length: 847 mm

Cathode

- Coverage: 93% 4π
- Operation duration ~ 5 years

3 mn

GEANT4 simulation

A lot of details in the simulation.

Reconstruction code needs to be developed to fully evaluate the impact on the physics.

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \cap \bigcirc \bigcirc 0 0 00 0 0 0 0 \bigcirc \bigcirc 0 0 0 0 0 \bigcirc \bigcirc 0 \frown \cap \bigcirc 0 0 0 0 \bigcirc

A CGEM detector has been added to the BESIII simulation in order to preliminary evaluate its possible performance.

CGEM expected performance

Readout	σ _{rφ} (μm)	σ _z (μm)
Digital readout (Beam test @2009)	330	400
Analog readout (magnetic field effect avoided)*	80	150

* Taken as expected spatial resolution

Purpose of beam test(s) ...

- Validate GEM analog readout in magnetic field.
- Validate Garfield simulation and extract useful information for hit digitization.
- Validate the BESIII anode structure.

... & Some possible measurement to perform

- Spatial resolution as function of the magnetic field
- Cluster size as function of the magnetic field
- Perform the same measurements at different gain
- Other measurements:
 - efficiency
 - different gas mixture

BESIII beam test setup

BESIII beam test - readout anode design

BESIII beam test – Readout

DATA ACQUISITION SUPPORTS FULLY ANALOG, FULLY DIGITAL AS WELL AS MIXED MODE READOUT

APV25 (ANALOG – 128 chs)

GASTONE (DIGITAL – 128 chs)

BESIII beam test – Setup

Cosmic data: Spatial resolution

with digital readout

G. Felici

Cosmic data: Cluster size

- Data acquisition based on APV25 system run smoothly (ATLAS parameters setup and DAQ system).
- Integration of tracking chambers, BES proto and mechanical structure is going on
- Setup details have been already discussed with RD51 collaboration.
- Beam test will start on Nov 26 and end on Dec 14

