Sampling Calorimetry with Resistive Anode Micromegas (SCREAM) <u>Test plans in RD51 beam line</u>

Kolkata meeting, October 31st 2014

LAPP, Annecy: C. Adloff, M. Chefdeville, Y. Karyotakis, I. Kolestou NCSR, Demokritos: T. Geralis, G. Fanourakis, A. Kalamaris, D. Nikas, Chrysa Vassou IRFU, Saclay: M. Titov Univ. of Athens: N. Saoulidou

Resistive Micromegas for Particle Flow (sampling) calorimetry

→ at future linear colliders (ILC, CLIC)

HCAL with 1x1 cm2 pads, 4-5 lambda, 40 layers, W or Fe absorbers Constrains on power-consumption (power pulsing), low noise (self-triggering) High channel density (ASIC on PCB), active layer thickness (< 1 cm)

Advantage of resistive layer: removes spark protection diodes on PCB (\rightarrow cf. existing prototypes next slide) (simpler design, more reliable, probably more cost effective)

→ at high-luminosity LHC (CMS)

Tail catcher of calorimetric system in forward region (completes Si-W ECAL+HCAL), upgrade for 2022 running Constrains on rate capability, ageing, radiation hardness

Advantage of resistive layer: suppress or attenuate sparks, no or negligible dead time

Prototypes for a LC

Large-area Micromegas with integrated front-end electronics

1x1 m2 prototype based on 6 boards
 Each boards houses a Bulk Micromegas, 32x46 pads of 1x1 cm² and 24 MICROROC ASIC (1536 channels)
 Non-resistive, ASIC are protected from sparking by diode networks on PCB

4 prototypes were build and extensively tested in beam (RD51 and CALICE) 2 publications reporting on construction (NIM A729 (2013) 90) & operating characteristics (A763 (2014) 221)

> Setup in H4 RD51 beam line (2012) At next testbeam, the setup will be similar, but smaller

PCB with ASIC & diodes (recto)

6 Bulks in 1 chamber (verso)

Highlights of testbeam results (LC-prototypes)

What kind of resistive coatings?

Scalable to large area

 \rightarrow charge evacuation to ground through the pad and not on the side \rightarrow buried resistor In this scheme, resistive and readout pads are connected by a resistor and separated by an insulator.

Fast evacuation of charge

→ small RC constant R is the sheet resistance of the resistive pad + the buried resistance C is controlled by the insulator thickness and the pattern & size of the pad

What will we investigate?

Signal linearity will eventually determine the response of a sampling calorimeter \rightarrow effect of rate but also of energy deposit (dE/dx) on gas gain

How is sparking affected

 \rightarrow Careful monitoring of the mesh voltage & current

Study different configurations of buried resistors with small prototypes Then, build a large-area prototype with the best configuration

<u>Use simple PCB + re-use existing hardware</u> (JINST 4 (2009) P11023) Design of 10x10 cm² with 1x1 cm² pads External electronics (Gassiplex), VME module -based DAQ, Labview sotfware

We first produced a prototype with different R-patterns

then prototypes with the same pattern over the pad matrix

Rpad + Bulk

Study different configurations of buried resistors with small prototypes Then, build a large-area prototype with the best configuration

<u>Use simple PCB + re-use existing hardware</u> (JINST 4 (2009) P11023) Design of 10x10 cm² with 1x1 cm² pads External electronics (Gassiplex), VME module -based DAQ, Labview sotfware

We first produced a prototype with different R-patterns then prototypes with the same pattern over the pad matrix

10x10 pad PCB

Snake-like buried R

Prior to the testbeam, we are checking the performance of all prototypes At this moment, 5 prototypes were build, including a non-resistive as reference.

Rate scan

X-gun at Demokritos (3 keV, <11 MHz/cm² in detector) to be continued in the RD51 lab at CERN

dE/dx scan

Use GEM foil as charge injector, dedicated chamber @ LAPP

Xgun @ Demokritos

Chamber with GEM+Bulk

For some patterns, linearity is preserved up to 11 MHz/cm²! Will it still be the case in hadron showers...

Main goal: test prototypes in high-energy, high-rate, hadron showers

Setup (downstream of other setups)

2 scintillators + PMT + trigger electronics
1-10 steel absorber layers (30x50 cm², 2 cm thick), can be removed in < 15 minutes
Detector stack: 2 non-resistive prototypes and 3-4 resistive prototypes (use non-R as telescope)
1 rack with VME modules for ASIC control & signal digitisation
2 PC (remote desktop from control room)
Gas: Ar/CO2 93/7 (2 bottles)

Beam 1: Muons

Detector calibration, single particle response

Beam 2: Pions (with & without absorbers)

Rate scan: 100 Hz to 100's of kHz Energy scan: 10 to 100's of GeV \rightarrow we will change the beam quite a bit!

What we would need from RD51: slow-control system for CAEN HV-unit (SY2527, 10 channels) Crucial to study sparks