Status of the ALICE TPC upgrade and beam-time prospects

Alexander Deisting on behalf of the ALICE TPC upgrade team

31th of October, 2014

- Requirements for the upgraded ALICE TPC
- Ion Back Flow & Energy resolution
- Large prototype(s)
 - Construction
- Discharge probabilities
- Test program at the SPS

New LHC conditions:

- ▶ Increased rate in PbPb collisions of 50 kHz \Rightarrow Pileup of 5 events (8000 interactions) in the drift volume at every time
- Gated readout not longer feasible

\Rightarrow Readout chambers with GEMs intended

Requirements:

- ▶ Ion Bback Flow < 1%
- \blacktriangleright $\sigma_{
 m E}/E <$ 12% for $^{55}{
 m Fe}$
- Gain of 2000 in $Ne/CO_2/N_2$ (90:10:5)

Ion Back Flow & Energy resolution

Presented in the TDR:

- Quadruple GEM stack with Standard (140 µm) and Large Pitch (280 µm) GEMs
- Configuration: S-LP-LP-S
- \blacktriangleright IBF \sim 0.7 and $\sigma_{
 m E}/E\sim$ 12%

Reminder:

$$\epsilon = \frac{\# \text{ions escaping the amplification stage}}{\# \text{primary ionisations}}$$

Ion Back Flow =
$$\frac{1+\epsilon}{\text{effective gain}}$$

Different settings examined:

- Combinations of: SP (90 µm), S, MP (200 µm) and LP GEMs
- 2GEMs + MM (the given points in the plot are preliminary)

As presented at the LCC Meeting on the 23 10 2014

Large size prototypes

Large size Inner Readout Chamber prototypes

- Utilises existing alu-bodies/pad planes
- GEMs (singel mask etching technique) are mounted on top

3GEM prototype

- 3 standard GEMs
- Tested at CERN PS in 2012
- ▶ $dE/dx \sim 10.5\%$ for 1 GeV pions was observed \Rightarrow compatible with the present MWPCs

GEM IROC prototype

- Quadruple GEM stack (S-LP-LP-S) with 4 single mask GEMs
- Finished in August

Hybrid 2GEM + MM prototype

 2 standard GEMS with one Micromegas

Under contruction at CERN

Testbeam campaings:

- ▶ PS: dE/dx resolution
- SPS: Stability measurements

Outer ReadOut Chamber prototype

- Construction
- ► Testing & QA

Production start of the readout chambers

Discharge studies

Motivation:

- Minimise possible dead time due to discharges/avoid damage of the detector
- \blacktriangleright Tripple GEM stack \rightarrow optimised to have a low discharge probability
- But: Quadruple GEM stack introduces again a higher discharge probability
- Discharge probability of 10⁻⁹ (α) and 10⁻¹² (β) (compared to other LHC detectors)

Studies so far:

- \blacktriangleright Performed with 10 \times 10 cm^2 GEMs
- \blacktriangleright Brag-peak adjusted to radiation source and gas \rightarrow lonisation takes place close to the GEM stack

Discharge studies -2/2

Sources and rates $^{241}{\rm Am} \sim 11\, \text{kHz}; \,^{239}{\rm Pu} + ^{241}{\rm Am} + ^{244}{\rm Cm} \sim 600\, \text{Hz}; \,^{90}{\rm Sr} \sim 60\, \text{kHz}$

0011800	gain			
source	2000	3000	5000	
α	$< 2 \times 10^{-8}$	${ m < 9 imes 10^{-8}}$		
α	< 1.5 $ imes$ 10 ⁻¹⁰			
α	$ $ $< 3.1 imes 10^{-9}$	$< 2 imes 10^{-8}$	$(1.8\pm1.1) imes10^{-8}$	
β			$< 3 imes 10^{-12}$	

- \blacktriangleright 2GEM + MM preliminary: $\sim 10^{-8} \rightarrow$ studies ongoing
- Further tests needed \Rightarrow SPS

Stability tests at the SPS

Test campaing at the SPS - 1/2

- Place the prototype with the readout plane into the beam
- Shower off the beam with a (Fe) brick
- Examine the performance of the large prototype while exposed to a high rate of MIPs

(FLUKA simulations for CBM (FAIR) by A. Senger)

Assume 10^8 pions per spill with a duty cycle of 15 s and an efficiency $\epsilon = 0.8$, then:

After a Fe brick:

 \Rightarrow The expected rate should allow to collect enough statistic to measure the discharge probability with some precision (given optimal beam conditions)

Quadruple GEM stack characteristics:

- \blacktriangleright IBF & $\sigma_{
 m E}/E$: Research ongoing, promising settings already found
- dE/dx will soon be examined at the PS
- Further discharge studies on the way (SPS)

Production

- Already gained some experience from the IROC prototype production
- OROC production on the way
- Planning for mass production started

Backup

- TDR ALICE Collaboration, "Technical Design Report for the Upgrade of the ALICE Time Projection Chamber" – ALICE-TDR-016, 2014
- LHCC H. Appelshaeuser, "Status of TPC Upgrade" LHCC referees meeting, September 2014
- Chilo Private communication Chilo Garabatos Cuadrado
- Peskov Private communication Vladimir Peskov
- Gasik Private communication Piotr Gasik

Challenges for the upgrade of the ALICE TPC – 1/2

Current setup of the TPC

- 2×2.5 m drift length
- Current gas mixture: Ar/CO₂ (90:10)
- Readout with MWPC
- Gating grid

General requirements for the upgrade:

- Performance in terms of momentum and dE/dx resolution should stay the same
- Readout should be able to cope with the higher rates

Best results with quadruple GEM stacks:

configuration	IBF	$\mid \sigma_{\rm E}/E$
S-LP-LP-S	0.7%	12%
S-S-LP-S	0.8%	12%
S-S-LP-SP	0.5%	12%
S-LP-LP-SP	0.8%	12%
S-S-S-S	<1%	>12%
S-S-SP-S	<1%	>12%
LP-S-LP-S	<1%	>12%
SP-S-LP-S	0.4%	>12%
SP-S-LP-S	0.4%	?
SP-S-LP-SP	?	?
MP-S-LP-SP	?	?
		/

- ► Baseline settings
- Settings with too bad performance
- Best setting so far

Tests on many different sites ongoing:

- CERN: 4GEM/2GEM+MM
- Frankfurt: 4GEM
- Yale: 2GEM + MM
- Bonn/Munich: 4GEM/3GEM/2GEM + MM

CERN measurements with 2GEM+MM

 ΔV_{GEM1} =200~270V, ΔV_{GEM1} =210, 230, 250V Gain ~2000

Taken from: Measurements with 2GEMs + MM in Ne/CO2 at CERN, Kohei Terasaki et. al.

Chamber production

- GEM production: CERN and possibly TECH-ETCH (USA)
- QA: Search for defects/HV tests, HD scan, gain uniformity test
- Framing Useful commercial systems for big foils wanted

- Assembling of the GEM stack
- Testing of the gain uniformity of the whole system
- Different steps at different sites

	#chambers	#foils	size
IROC	36	144	$47 \times 50 \text{ cm}^2$
OROC	36	144	$87 \times 38 \text{ cm}^2$
		144	$72 imes 35 ext{ cm}^2$
		144	$59 imes35 mcm^2$

Further issues

 Development of new FECs

Discharge studies with a quadruple GEM stack

Taken from: "Status of TPC Upgrade", Harald Appelshaeuser, LHCC referees meeting, September 2014

Summary of discharge studies

Alternative solution: 2 GEM + MM

MMG, V	dV, GEM top, V	<ga>, MMG</ga>	<ga> (x e3)</ga>	Statistics	Number of sparks (MMG)	Number of sparks (GEM)	
460	230	500	1.9	1.06 e8	0	0	
475	225	656	2.05	1.15 e8	0	0	
485	220	838	2.15	1.2 e8	0	0	
505	220	1315	3.37	5. e4	25	0	
	E drift =	0.4 kV/cm; E	Barometric p	ressure went	down		
465	230	~ 598	~ 2.3	1.08 e8	20	0	
475	225	~ 754	~ 2.35	~ 1. e7	~ 2.5	0	
E	E drift = 0.3 kV/cm; Barometric pressure went down (during the Run)						
475	225	~ 760 ~ 805	~ 2.35 ~ 2.5	3. e7 2. e7	0 3	0 0	
	1	le+CO2+C2H	4 (90-10-10)	, E drift = 0.4	kV/cm		
510	270 (245 mid GEM)	~ 670	~ 2.1	4.6 e7 gas done	0	0 2	

Results not yet conclusive -studies ongoing

Taken from: "The ALICE TPC Upgrade: R&D", Chilo Garabatos, ALICE Week

FLUKA simulations -1/2

Setup for FLUKA simulations:

(FLUKA simulations for CBM (FAIR) by A. Senger)