ROOT data model evolution

Lukasz Janyst

CERN/FAIS-UJ

June 4, 2008

Lukasz Janyst ROOT data model evolution

Q@ Memory representation of C++ objects and dictionary
information

O How does the streaming system work?

© Currently implemented schema evolution capabilities
Q What's missing?

O Goals of the new system

O Design principles

@ Timescale

Lukasz Janyst ROOT data model evolution

Memory representation of C++ objects

double a; int ¢; - -
double b; int d; ClassA :: .
ClassA :: b .
ClassB :: ¢ (16)
double e; ClassB :: d .
double f; ClassC :: e
ClassC :: f .
class ClassA { double a, b;
class ClassB { int ¢, d; } ClassC #*ptr = ...
class ClassC: public ClassA, int &val_c =
public ClassB *(int*) ((char*)ptrl + 16);
{ double e, f; } val_c = 47;

Lukasz Janyst ROOT data model evolution

How do we know the offsets? - CINT

o The header file containing data model definition and the
LinkDef file are being processed by ROOTCINT resulting with
dictinary C++ code

o The code is then compiled and loaded

Lukasz Janyst ROOT data model evolution

How do we know the offsets? - REFLEX

—m

The process of dictionary generation is similar for REFLEX.

The 10 subsystem works with ROOT's native introspection
mechanisms so REFLEX dictionaries need to be interfaced - this is
done by CINTEX.

Lukasz Janyst ROOT data model evolution

TStreamerlnfos

_ @ Basing on dictionary information

TStreamerlnfo objects are created

o TStreamerinfos contain class name and
version information and a list of streamer
elements corresponding to persistent data
members and base classes

o TStreamerElements hold information
about names, types, sizes and offsets of

— entities they represent

o TStreamerlnfos are persistified in ROOT files and contain all
the information about what was written to the buffers

Lukasz Janyst ROOT data model evolution

o While storing and reading collections we're just interested in
accessing their elements in sequential way, ie. to treat them as
ordinary arrays of objects

o In ROOT 10O collections are wrapped into T CollectionProxies
providing uniform interface to access their elements via []
operator and implementing some common operations like
cleaning or resizing

o The approach works with both the STL collections and ROOT
collections

Lukasz Janyst

Writing data and different streaming modes

o ROOT tries to decompose objects storing data members in
separate buffers if that is possible

o It usually results with smaller files since the metadata
describing the objects is being handled more efficiently

o Not always supported

Non-split mode

o All data members are stored in the same buffer

o Collections can be arranged in different ways in the buffer
(member-wise or object-wise)

o If we deal with collections of polymorphic pointers then we
need to store the information about actual concrete object
with every element of the collection

Lukasz Janyst ROOT data model evolution

Currently implemented schema evolution capabilities

Automatic schema evolution

o Reading is done by looping over streamer elements (or
branches that refer to streamer elements) and putting read
data into right chunks of memory

o When new data members are added, removed or just
rearanged the memory layout of the objects changes

o ROOT deals with this by matching the names of the streamer
elements to the names of the data members of transient
classes and adjusts offset information in streamer elements
accordingly

o If some data members are missing then the corresponding
streamer elements are skipped while processing the buffer(s)

y

Lukasz Janyst ROOT data model evolution

Currently implemented schema evolution capabilities

Automatic schema evolution

o ROOT is also able to do the conversion between basic types,
between collections (since they share the same interface) and
also handle some renaming

Manual schema evolution

o Works only in non-split mode

o The user has to write and register a custom streamer

o The code has to manipulate the buffer directly and write the
code to handle all of the versions that has ever been written
even those that in principle would not need evolving

Lukasz Janyst ROOT data model evolution

o Rename classes
o Rename data members

o Change the shape of the data structures or convert one class
structure to another

o Change the meaning of data members
o Access the buffer directly
o Assign values to transient data members

o Ensure that the objects in collections are handled in the same
way as the ones stored separately

o Make things operational also in bare ROOT mode

Lukasz Janyst

The main idea behind the design

The new functionality will be based on enhancements to the
TStreamerinfo structure. New TStreamerElement concrete types
will be introduced to call the conversion functions.

BuildOld

Lukasz Janyst ROOT data model evolution

o When we ancounter old versions of persistent objects we get
corresponding streamer info (in-memory) and adjust it to
memory shape of the object

o We search for the rules of conversion (function pointers) and
insert artificial (blue) streamer elements

o We check the dependencies on old data members (yellow)

o While reading we buffer “yellow” information in memory, supply
it to conversion function associated to “blue” streamer element

o The function puts the result in the right place in the memory

Lukasz Janyst

The system has to be supplied with information how to perform the
conversion - a conversion function. We have forseen two ways to do
that:

o (1) a code snippet supplied as string in the selection xml of
REFLEX or LinkDef.h of CINT; such snippet will be then
preprocessed and compiled using ACLIC functionality at
dictionary generation time

o the rules supplied as strings can be stored in ROOT files to
enable users to analize data files containing different versions
of data with the same code

o (2) via C++ API by passing either the strings or the function
pointers

o the rules provided via the APl can be compiled on the fly or
interpreted

Lukasz Janyst

The user code is available

We will support two approaches for accessing files.

o When the user code (EDM libraries, dictionaries and schema
evolution info) then we can write the data in the shape of
current version EDM and embed the coonversion rules in the
files. Naturally we could also read the files containing different
versions of data evolving it to the current shape.

Lukasz Janyst ROOT data model evolution

Bare ROOT mode - no user code

o Another tipical use case is when users look at the chains of
ROOT files possibly containing different versions of the Data
Model in bare ROOT mode. We also want to support the case
of applying the schema evolution rules to emulated classes
(the ones recreated from TStreamerInfos) basing on the code
snippets stored in the files. Of course the rules describing how
to evolve old files will be stored in the new ones and the
functionality will be available only if the information is present.

Lukasz Janyst ROOT data model evolution

There will be two types of conversion rules:
o raw - old data is being read directly from the buffer

@ normal - old data is being read from proxified “virtual” object

In the user defined code snippets the following variables will be
available (prepended by the preprocessor before compilation)
o newObj - of the type of target object if the user code is
available
@ names of the data members of the in -memory object being
read
@ oldObj - TVirtualObject object holding the data read from file

o buffer - for raw rules

Lukasz Janyst

#pragma read
source="ClassA::m_a;ClassA::m_b;ClassA::m_c"
version="[4-5,7,9,12-]1" checksum="[12345,123456]"
target="ClassB::m_x" targetType="int"
embed="true" include="iostream,cstdlib"
code="{ some C++ code }"

#pragma readraw
source="ClassA::m_a" version="[4-5,7,9,12-1"
checksum="[12345,123456]" target="ClassB::m_x"
embed="true" include="iostream,cstdlib"
code="{ some C++ code }"

Lukasz Janyst

<read source="ClassA::m_a;ClassA::m_b;ClassA::m_c"
version="[4-5,7,9,12-]" checksum="[12345,123456]"
target="ClassB::m_x" targetType="int" embed="true"
include="iostream,cstdlib">

<! [CDATA[

some C++ code

11>

<read>

<readraw source='"ClassA::m_a" version="[4-5,7,9,12-]1"
checksum="[12345,123456]" target="ClassB::m_x"
embed="true" include="iostream,cstdlib">

<! [CDATA[

some C++ code

11>

<readraw>

Lukasz Janyst

Example - Raw rule

#pragma readraw source="TAxis::fXbins"
version="[-5]"
include="TAxis.h" code="

Float_t *xbins = 0;
Int_t n = buffer.ReadArray(xbins);
fXbins.Set(xbins);

}Il

The example shows how to read the old data when the layout in
the buffer is different than the one expected by the system.

Lukasz Janyst ROOT data model evolution

#pragma read source="ClassA::m_a;ClassA::m_b" \
version="[-3]" target="ClassA::m_a" \
code="{ \
static int a_id(0ld0bj->GetId("m_a")); \
static int b_id(o0ldObj->GetId("m_b")); \
m_a = 0ld0bj->GetMember<int>(a_id)* \

01d0bj->GetMember<int>(b_id) ; \

}ll

This simple example shows how to handle the reading when ClassA
version 1,2 and 3 had two data members (m _a and m_b) and the
current shape has just one data member (m__a) that is a result of
the multiplication of the old ones.

Lukasz Janyst

class State { // version 1

unsigned int m_flags;
Gaudi: :TrackVector m_stateVector;
Gaudi::TrackSymMatrix m_covariance;
double m_z; r;
becomes:
class State { // version 2
unsigned int m_flags;
StateVector m_stateVector;
Gaudi::TrackSymMatrix m_covariance; };
with:

class StateVector {
Gaudi::TrackVector m_parameters;
double m_z; };

Lukasz Janyst

Real life example - the rule

<read
source="State: :m_stateVector;ClassA::m_z"
version="[1]"
target="State::m_stateVector"
embed="true">

<! [CDATA[

new (&m_stateVector) StateVector(

01d0bj->Get<Gaudi: :TrackVector>("m_stateVector"),

01d0bj->Get<double>("m_z"));

11>

</read>

Lukasz Janyst ROOT data model evolution

Let’s consider the following example:

class Event

{

std: :vector<Track> fTracks;

};

o If we have a rule set for the Track class, then the rule will be
run individually on each Track object before they are inserted
to the vector.

o If we have a rule involving fTracks data member or for
std::vector<Track> then on disk Tracks will be loaded to an
emulated collection and the user will be responsible for dealing
with them on his own.

Lukasz Janyst

The schema evolution rules will be stored in the same list as
TStreamerlnfos. If a new file is being read by a new version of
ROQOT the information will be read and the appropriate
TStreamerlnfos (in-memory) updated. If a new file is being read by
old version the warning is printed that unidentified object was
found in the streamer info list and the schema evolution
information will be ignored.

In split mode the reading requests are forwarded to streamer infos
pointing out the appropriate streamer element and buffer. To
handle new “syntetic” streamer elements we will need to add some
“transient” branches.

Lukasz Janyst

o the first discussions started in September 2007

o the real work started in March 2008

o the document describing design principles ready in May 2008
o I'm currently working on the implementation

o Philippe Canal is going to start to work on it in the second
half of July

o the first working prototype should be released at the end of
August

@ too late to put it int the June release

Lukasz Janyst

