KU LEUVEN

MEASUREMENT OF THE β ASYMMETRY PARAMETER IN ³⁵Ar DECAY WITH A LASER POLARIZED BEAM

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

V_{ud} quark mixing matrix element & CKM unitarity

• From Ft value of $0^+ \rightarrow 0^+$ superallowed pure Fermi transitions:

$$\mathcal{F}t^{0^+ \to 0^+} \equiv f_V t^{0^+ \to 0^+} \left(1 + \delta_{NS}^V - \delta_C^V\right) (1 + \delta_R') = \frac{K}{2G_F^2 V_{ud}^2 C_V^2 (1 + \Delta_R^V)}$$

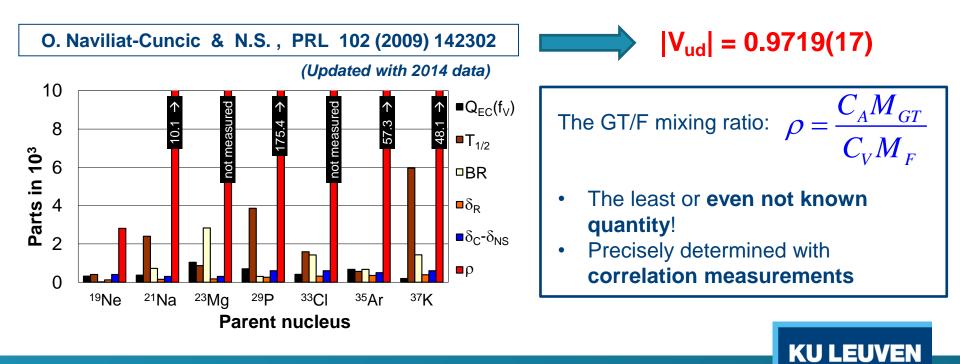
$$\frac{from}{experiment} \quad nucleus \ dependent} \quad nucleus \ independent$$

$$|V_{ud}| = 0.97425(22)$$

$$Hardy \& Towner, PR \ C \ 79 \ (2009) \ 055502$$

$$\downarrow V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99991(51)$$

$$\downarrow V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99991(51)$$


$$\downarrow V_{ud}|^2 + |V_{ub}|^2 = 0.99991(51)$$

V_{ud} quark mixing matrix element & CKM unitarity

• From corrected Ft values of $T = \frac{1}{2}$ mirror β transitions:

$$Ft^{mirror}\left(1 + \frac{f_{A}}{f_{V}}\rho^{2}\right) = 2Ft^{0^{+} \to 0^{+}} = \frac{K}{G_{F}^{2} V_{ud}^{2} (1 + \Delta_{R}^{V})}$$

Requires measurement of Q_{EC} , $T_{1/2}$, $BR + \rho$

V_{ud} quark mixing matrix element from with correlation measurements of mirror β transitions

• β-v correlation:

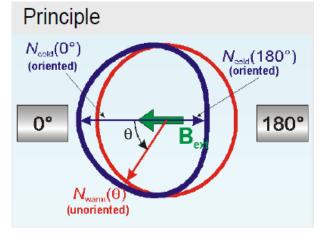
 $a = \frac{(1 - \frac{\rho^2}{3})}{(1 + \rho^2)}$

• β asymmetry:

$$A = \frac{\rho^{2} - 2\rho \sqrt{J(J+1)}}{(1+\rho^{2})(J+1)} \quad \mathbf{I} \stackrel{\theta}{\longrightarrow}$$

		a			Α	
Parent nucleus	ΔV_{ud}	$(\Delta V_{ud})^{\text{limit}}$	Factor $\Delta \mathcal{F}t$	ΔV_{ud}	$(\Delta V_{ud})^{\text{limit}}$	Factor $\Delta \mathcal{F} t$
³ H	0.0011	0.0010	2.1	0.0011	0.0009	2.3
¹¹ C	0.0025	0.0016	4.0	0.0207	0.0207	0.3
¹³ N	0.0017	0.0017	1.0	0.0123	0.0123	0.1
¹⁵ O	0.0020	0.0016	2.4	0.0023	0.0020	1.9
¹⁷ F	0.0019	0.0013	3.1	0.0341	0.0341	0.1
¹⁹ Ne	0.0011	0.0010	1.5	0.0011	0.0011	1.5
²¹ Na	0.0022	0.0017	2.7	0.0036	0.0034	1.3
²³ Mg	0.0025	0.0018	3.1	0.0034	0.0030	1.9
²⁵ Al	0.0019	0.0018	1.7	0.0056	0.0056	0.5
²⁷ Si	0.0029	0.0018	4.1	0.0068	0.0066	1.1
²⁹ P	0.0026	0.0018	3.4	0.0024	0.0014	4.3
³¹ S	0.0038	0.0018	5.9	0.0068	0.0061	1.8
³³ Cl	0.0021	0.0018	2.0	0.0013	0.0006	6.0
³⁵ Ar	0.0019	0.0018	1.1	0.0007	0.0004	4.8
³⁷ K	0.0034	0.0017	5.8	0.0050	0.0041	2.3
³⁹ Ca	0.0024	0.0016	3.5	0.0032	0.0027	2.2
⁴¹ Sc	0.0029	0.0022	2.7	0.0299	0.0299	0.2
⁴³ Ti	0.0076	0.0018	13.2	0.0167	0.0151	1.6
⁴⁵ V	0.0112	0.0020	17.7	0.0115	0.0032	11.2

 ΔV_{ud} for relative precision of 0.5% on $a_{\beta\nu}$ or A_{β}


N.Severijns & O. Naviliat-Cuncic, Physica Scripta T152 (2013) 014018

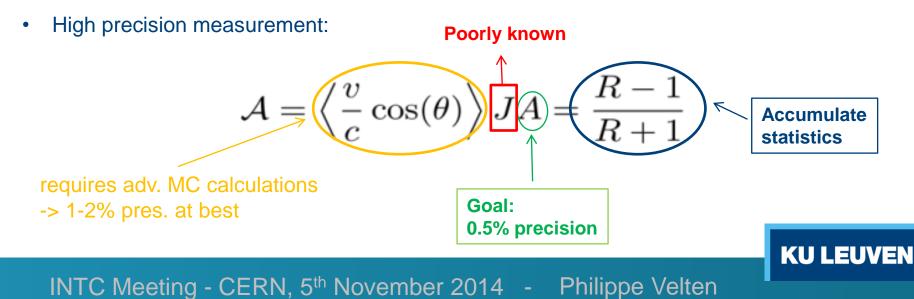
KU LEUV

- A(³⁵Ar) is the best candidate:
- $\Delta A/A=0.5\% \rightarrow \Delta V_{ud} = 0.0007$ with present Ft value
- $\Delta A/A=0.5\% \rightarrow \Delta V_{ud} = 0.0004$ if Ft value is improved by factor 4.8 (requires Q_{EC} , $T_{1/2}$ and BR)

(Note: $\Delta V_{ud} (0+ \rightarrow 0+) = 0.00022$)

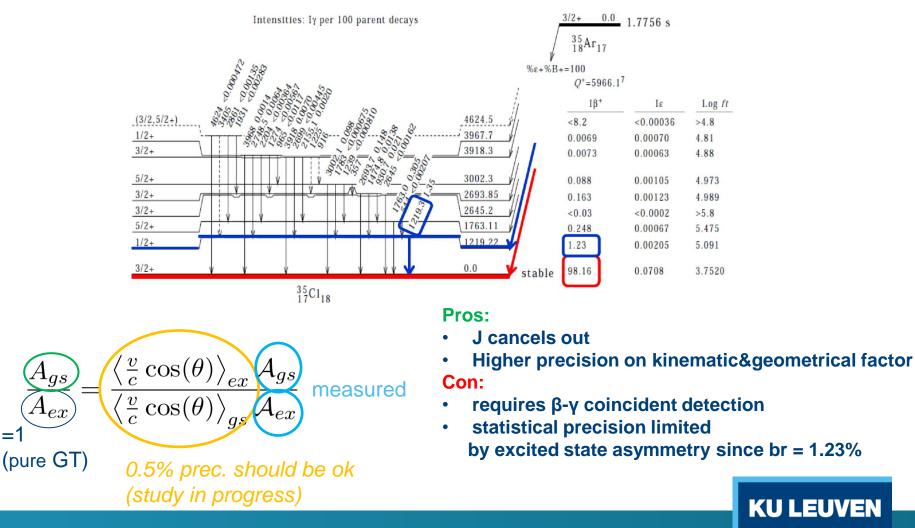
Measuring the β asymmetry parameter in nuclear β decay

• Transition rate of polarized nuclei:


$$W(\theta) = W_0 \left(1 + \frac{v}{c} JAcos(\theta) \right)$$

• Experimental asymmetry:

$$\mathcal{A} = \left\langle \frac{v}{c} \cos(\theta) \right\rangle JA = \frac{R-1}{R+1}$$


• Spin-flip:

$$R = \sqrt{\frac{N(0, +J)N(\pi, -J)}{N(0, -J)N(\pi, +J)}}$$

Using the 1st excited state of 35Ar transition to reach high precision level

Measurement of both ground & first excited state of ³⁵Ar:

INTC Meeting - CERN, 5th November 2014 - Philippe Velten

=1

Requirements to reach the 0.5% precision on A(³⁵Ar)

Highly efficient β-γ coincident detection setup

Development in progress at IKS - KU Leuven

Intense decay source of highly polarized ³⁵Ar

VITO beamline at CERN-ISOLDE

expected performance for the 35Ar beam:

- production rate: I = ~1e6 ³⁵Ar/s
- polarization: **P** = **0.2 0.4**

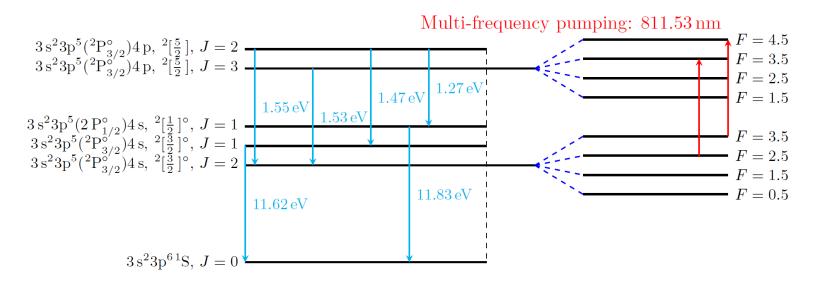
Implant 35Ar in a host lattice + magnetic field to maintain polarization

Which crystal is the best suitable to implant ³⁵Ar and maintain polarization long enough to measure the β asymmetry (λ =1.8s) ?

Answering this question is the goal of the proposed experiments at COLLAPS

KU LEUVEN

 Preliminary estimation: 0.5% statistical precision is achievable within few days of data taking time


→ Depends strongly on the polarization level of the decay source:

Ex: if $J=0.4 \rightarrow 0.2$, the data taking time to reach a given stat. precision is **multiplied by 5**

Polarization and crystal tests at COLLAPS

• Scheme for the Ar beam polarization:

- Charge exchange with K results in 30-40% metastable (3p₅4s[3/2])₂ state of neutral Ar
- Optical pumping to J=3 state with cw Ti:Sa laser results in **30% polarization**

- o Characterize the ³⁵Ar hyperfine structure with β-NMR
 - 2% experimental asymmetry is expected

→ ~30min. data taking duration to gather enough statistics

KU LEUVEN

Polarization and crystal tests at COLLAPS

- Selection of host candidates:
 - **KBr**:
 - Used as implant host in ³⁵Ar magnetic moment measurement with β -NMR
 - Cooled at 20K
 - **NaF & CaF**:
 - NaF Used as catcher for β-NMR study of ²³Ne noble gas
 - Cooled at 15K
 - CaF: mass closer to Ar
 - NaCl & Si:
 - Good implantation hosts for several elements

Matsuta K, et al. Nuc. Phys. A 701 383c (2002)

Ohtsubo T, et al. Hyp. Int. 180 85 (2007)

KU LEUVEN

Minamisono T, et al. Hyp. Int. 35 979 (1987), Borremans D, et al. Phys. Rev. C 72 044309 (2005)

- Measurements with the existing detection setup at COLLAPS:
 - $_{\odot}$ Measure the polarization level + relaxation times with β -asymmetry setup
 - Use of acousto-optic modulators to provide maximum polarization
 - \rightarrow ~3h/relaxation time measurements
 - Measurement at different temperatures (ideally from 15K to room temp.)
 - Existing liquid nitrogen cooling at COLLAPS limited to 77K

Polarization enhancement by reionization at VITO & CRIS

- Polarized part of the beam could be separated from the non-polarized beam by state-selective re-ionization:
 - Collisional re-ionization with CI could increase polarization by a factor ~2
 - Re-ionizing gas target will be installed at VITO (late 2015)
 - Laser re-ionization:
 - Investigation of laser ionization scheme with CRIS (off-line)

KU LEUVEN

• 3 shifts on VITO to compare laser/collisional re-ionization

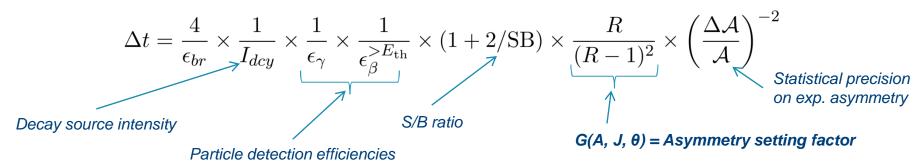
Beam time requirements for Phase 1 & phase 2

	Shifts	Notes
Phase 1: Test of various host materials at C	OLLAPS	
Locate ³⁵ Ar transitions,	1.3	
characterize HFS and set AOM's	1.5	
KBr relaxation time measurement	1	
Vent, change crystal, pump	1	Protons not required
Si relaxation measurements	1	
Vent, change crystal, pump	1	Protons not required
NaCl relaxation time measurement	1	
Vent, change crystal, pump	1	Protons not required
NaF relaxation time measurement	1	
Vent, change crystal, pump	1	Protons not required
CaF relaxation time measurement	1	
Contingency	0.7	
Total for COLLAPS	7 online + 4 offline	
Phase 2: Polarization enhancement by Re-io	nization at VITO	
Test of Collisional Re-ionization with Cl on VITO	3	
Ar ionization with CRIS	9	Protons not required
Test of LASER Re-ionization on VITO	3	HRS required
Total for VITO	6 online + 9 offline	
Total for phases 1 & 2	13 online + 13 offline	

KU LEUVEN

Answers to INTC technical comments:

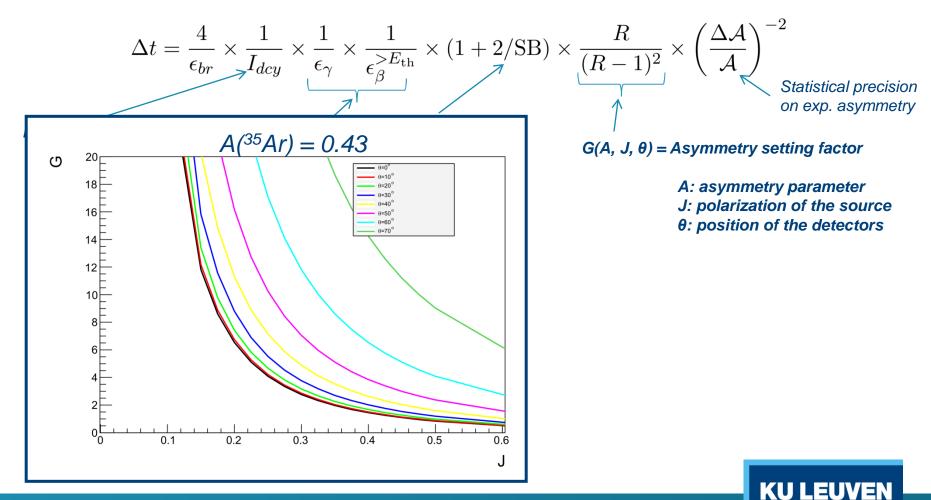
- Q: COLLAPS does safety file for this configuration exist? A: The COLLAPS safety file includes the B-NMR (magnetic fields etc. are included in the document)
- Q: Safety file for VITO missing
 A: The VITO safety file is complete and submitted to EDMS. The files
 can be transmitted to the INTC if this is useful.


 Q: What is the required yield and purity vs 35Cl; same as WITCH? A: For COLLAPS test, any amount of 35Cl is ok. For laser reionization, less than <u>2pA contamination</u> would be required to limit space charge effects in ISCOOL

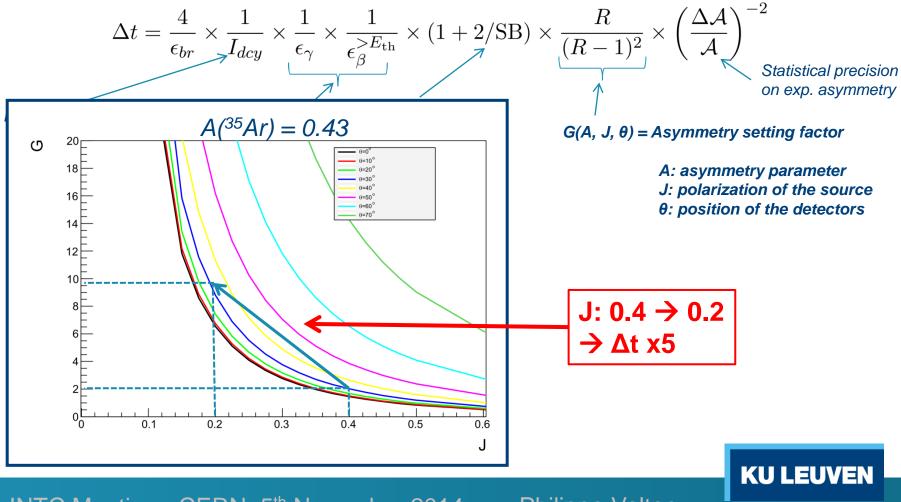
Thank you for your attention

KU LEUVEN

Data taking time estimation


• Level of polarization impact greatly the data taking duration:

KU LEUVEN


Data taking time estimation

• Level of polarization impact greatly the data taking duration:

Polarization enhancement by reionization at VITO & CRIS

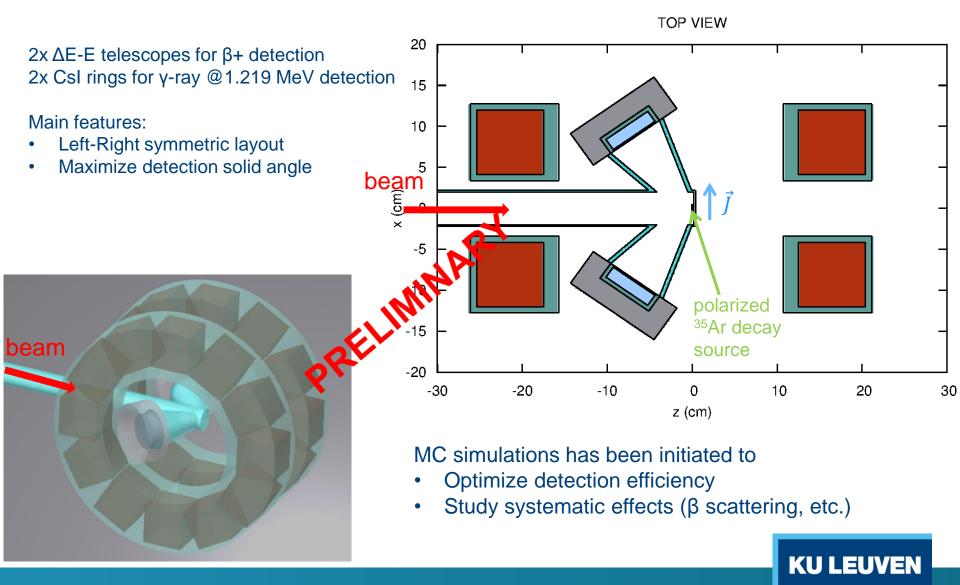
• Level of polarization impact greatly the data taking duration:

Data taking time estimation

$$\Delta t = \frac{4}{\epsilon_{br}} \times \frac{1}{I_{dcy}} \times \frac{1}{\epsilon_{\gamma}} \times \frac{1}{\epsilon_{\beta}^{>E_{\rm th}}} \times (1 + 2/{\rm SB}) \times \frac{R}{(R-1)^2} \times \left(\frac{\Delta \mathcal{A}}{\mathcal{A}}\right)^{-2}$$

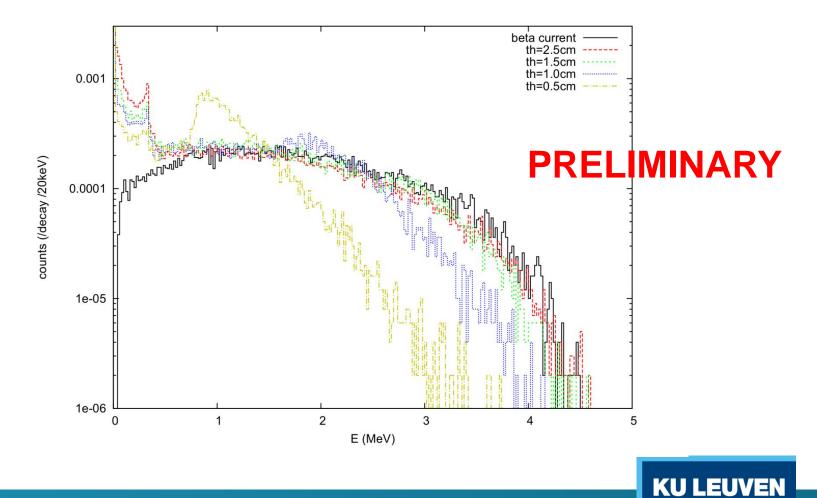
Parameter	Nominal	Pessimistic scenario
$\frac{\Delta A}{A}$	0.5%	idem
v/c	0.96	idem
θ (degree)	35	idem
$E_{\rm th}~({\rm MeV})$	1.4	idem
$\epsilon_{\beta}^{>E_{\rm th}} $ (count/decay)	2×10^{-2}	idem
$\epsilon_{\gamma} \ (\text{count/decay})$	4.7×10^{-2}	idem
$\epsilon^{\rm coinc}$ (count/decay)	1.16×10^{-5}	idem
S/B	4.7	idem
Q	1.43	idem
J	0.3	0.2
\mathcal{A}_{ex}	0.24	0.16
R	1.62	1.37
G	4.24	9.86
$N_2^{ m tot}$	$7.4 imes 10^5$	$1.89 imes 10^6$
$I \; (decays/s)$	10^{6}	$0.5 imes 10^6$
$rac{dN_{ ext{det}eta}}{dt} ext{ (counts/s)}$	3.7×10^4	1.85×10^5
$< \frac{dN_{\rm CsI\ block}}{dt} > (\rm counts/s)$	2.3×10^4	$1.15 imes 10^4$
Δt (s)	83680	388888

PRELIMINARY

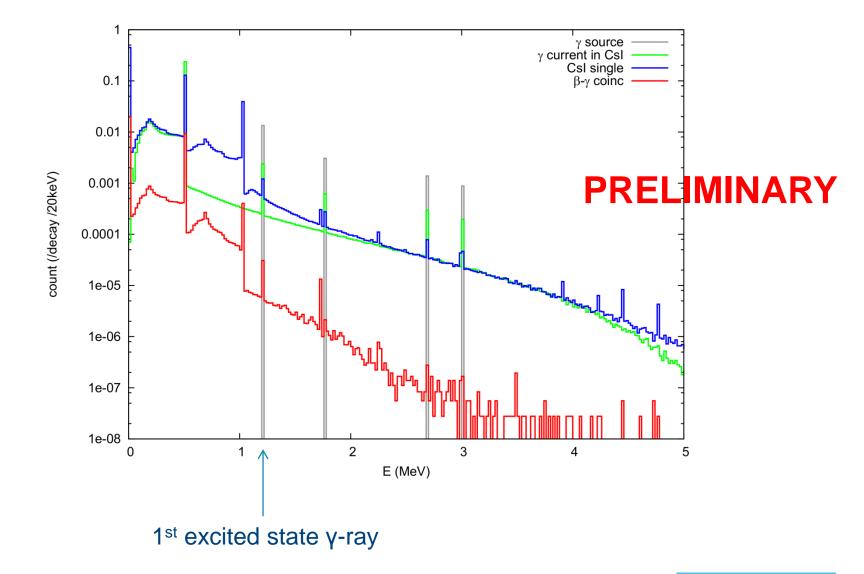

Nominal -> Pessimistic:

- 50% reduction in decay source
- Polarization: J= 0.2 instead of 0.3

4.5 days instead of 24h


KU LEUVEN

(Possible) detection setup for the A(³⁵Ar) measurement



Positron detection

• Energy deposition from 35Ar decay in detection volumes generated by MC simulations with FLUKA

Gamma detection

KU LEUVEN