## Search for tetrahedral states and X(5)

 symmetry in Yb nuclei with $\mathrm{N} \sim 90$ through Coulomb excitation using HIEISOLDE and MiniballC.M. Petrache - University Paris-Sud \& CSNSM Orsay

- ISOLDE, CERN
- Strasbourg, France
- Darmstadt, Germany
- Köln, Germany
- Athens, Greece
- Kolkata, India


## ISOLDE RILIS Yields of Yb nuclei

## 6. Ytterbium

Yb was the first element tested off- and on-line at the ISOLDE RILIS [1]. Neutron-deficient Yb isotopes down to ${ }^{153} \mathrm{Yb}$ were ionized and used for in-source atomic spectroscopy with the RILIS of the IRIS facility in Gatchina [24]. Here we report the yields obtained at ISOLDE with a standard Ta foil target and W ionizer. ${ }^{5}$ With the RILIS the Yb yields were enhanced by a factor of about 20 against surface ionization. The now measured online efficiency was probably below the off-line measured $15 \%$ [l]. Note that the W ionizer is


Fig. 3. Ion yields of ytterbium isotopes from a Ta foil target.

## Coulex of stable ${ }^{168} \mathrm{Yb}-{ }^{176} \mathrm{Yb}$






## Octahedral and thetrahedral shapes

$$
\begin{gathered}
\mathcal{R}(\vartheta, \varphi ; \hat{\alpha})=R_{0} c(\hat{\alpha})\left[1+\sum_{\lambda=2}^{\lambda_{\max }} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda, \mu} Y_{\lambda, \mu}(\vartheta, \varphi)\right] \\
\hat{\alpha} \equiv\left\{\alpha_{\lambda, \mu} ; \lambda=2,3, \ldots \lambda_{\max } ; \mu=-\lambda,-\lambda+1, \ldots+\lambda\right\}
\end{gathered}
$$

$\alpha_{40} \equiv+o_{1} ; \quad \alpha_{4, \pm 4} \equiv+\sqrt{\frac{5}{14}} o_{1}: \quad \alpha_{60} \equiv+o_{2} ; \quad \alpha_{6, \pm 4} \equiv-\sqrt{\frac{7}{2}} o_{2} \quad \alpha_{3, \pm 2} \equiv t_{1} \quad \alpha_{7, \pm 2} \equiv t_{2} ; \quad \alpha_{7, \pm 6} \equiv-\sqrt{\frac{11}{13}} t_{2}$


Fig. 1. Comparison of two octahedrally deformed nuclei. Left: octahedral deformation of the first order, $o_{1}=0.10$; right: octahedral deformation of the second order, $o_{2}=0.04$.


Fig. 2. Comparison of two tetrahedrally deformed nuclei. Left: tetrahedral deformation of the first order, $t_{1}=0.15$; right: tetrahedral deformation of the second order, $t_{2}=0.05$.

## Tetrahedral symmetric surfaces at increasing values of rank $\lambda$ deformations <br> $$
\alpha_{32}=0.1,0.2,0.3
$$



## Octahedral and thetrahedral spectra



Tetrahedral


## 4-fold degeneracies => new large (magic) gaps

## Disapperarance of the $\alpha_{30}$ pear-shape

 octupole effects in the Yb isotopesE(fyu)+Shell[e]+Correlation[PNP]


L(fyu) + Shell [e]+Correlation [PNP]


E(fyu)+Shell[e]+Correlation[PNP]


E (fyu) + Shell [e]+Correlation[PNP]

$\mathrm{E}(\mathrm{fyu})+$ Shell[e]+Correlation[PNP]


## Tetrahedral symmetry competition (the effect of $\alpha_{32}$ )

 and octupole effects in the Yb isotopesE(fyu)+Shell[e]+Correlation[PNP]
E(fyu)+Shell[e]+Correlation[PNP]


$\mathrm{E}(\mathrm{fyu})+$ Shell[e]+Correlation[PNP]




## Desexcitation patterns



Fig. 7. Schematic illustration: structure and possibilities of the decay out of a tetrahedral minimum. Since the lowest-order tetrahedral deformation has the same geometrical features as the octupole deformation $\alpha_{32}$, the concerned nuclei may generate parity-doublet rotational bands known from the studies of the octupole shapes. Establishing the structure of the bands (parity doublets?), the nature of the inter- and intra-band transitions (dipole? quadrupole? octupole?), the properties of the side-feeding and the decay branching ratios all that will greatly help identifying the symmetry through experiments.


Pear-shape (Octupole)

Dipole Moment=0


## Desexcitation patterns



## Nonzero Quadrupole Moments of Candidate Tetrahedral Bands

R. A. Bark, ${ }^{1}$ J. F. Sharpey-Schafer, ${ }^{2}$ S. M. Maliage, ${ }^{1,2}$ T. E. Madiba, ${ }^{1,2}$ F. S. Komati, ${ }^{1,2}$ E. A. Lawrie, ${ }^{1}$ J. J. Lawrie, ${ }^{1}$ R. Lindsay, ${ }^{2}$ P. Maine, ${ }^{1,2}$ S. M. Mullins, ${ }^{1}$ S. H.T. Murray, ${ }^{1}$ N. J. Ncapayi, ${ }^{1}$ T. M. Ramashidza, ${ }^{1,2}$
F.D. Smit, ${ }^{1}$ and P. Vymers ${ }^{1,2}$


## The ${ }^{160} \mathrm{Yb}$ case

$>$ The ${ }^{160} \mathrm{Yb}$ nucleus ( $\mathrm{Z}=70$ and $\mathrm{N}=90$ ) is double-magic with respect to the predicted tetrahedral symmetry.
$>$ The properties of the low-spin states, crucial to establish the symmetry, are not yet well known.
$>$ The spin and parity assignments to a low-lying 1255 keV state are contradicting: $3^{-}$or $4^{+}$?
$>$ The identification of the first $3^{-}, 5^{-}, 6^{+}, 7-$ states and their decay in-band and towards the ground-state band or other unobserved bands is crucial for the discovery of the tetrahedral bands.

## The ${ }^{160} \mathrm{Yb}$ case

$>$ To check if the populated negative-parity states are members of the tetrahedral band, one should measure with good accuracy the de-excitation transition probabilities $\mathrm{B}(\mathrm{E} 3) \downarrow, \mathrm{B}(\mathrm{E} 2) \downarrow$ and $\mathrm{B}(E 1) \downarrow$ knowing that the $B(E 2) / B(E 1)$ branching ratios corresponding to the inband to out-of-band are predicted $1 \div 2$ orders of magnitude smaller than in the standard octupole states.

## Critical point $X(5)$ symmetry in N~90 nuclei

$>$ The nuclei with $\mathrm{N} \sim 90\left({ }^{160} \mathrm{Yb},{ }^{162} \mathrm{Yb},{ }^{164} \mathrm{Yb}\right)$ are the candidates in which the critical point symmetry X(5) is expected to be best realized.
$>$ The branching ratios of transitions from non-yrast states will constitute a more stringent test of the model predictions.

## Shape phase diagram

## in IBM



FIG. 2. Phase diagram of nuclei in the interacting boson model.

## Level scheme in X(5)



FIG. 2. Schematic representation of the lowest portion of the spectrum of X(5) symmetry. Only states with $n_{\gamma}=0$ are shown. Energies are in units of the energy of the first excited state, $E_{2_{1}}-E_{0_{1}}=100 . \mathrm{B}(\mathrm{E} 2)$ values are in units of $\mathrm{B}\left(\mathrm{E} 2 ; 2_{1_{1}} \rightarrow\right.$ $\left.0_{1_{1}}\right)=100$.

## ${ }^{160} \mathrm{Yb},{ }^{162} \mathrm{Yb},{ }^{164} \mathrm{Yb}$ nuclei




## Transition between $\mathrm{X}(5)$ and rigid rotor

## Deformation dependent models with different potentials: confined $\beta$-soft (CBS)



FIG. 1. (Color online) Schematic structural triangle for the nuclear collective model [9] where the vertices represent idealized limits of structure and the legs transition regions. The CBS model describes the transition region from $\mathrm{X}(5)$ to the symmetric rigid rotor (dashed line). Nuclides with $R_{4 / 2}=3.1$ (e.g., ${ }^{164} \mathrm{Yb},{ }^{168} \mathrm{Hf}$, and ${ }^{160} \mathrm{Er}$, on which this paper focuses) might be intermediate between $\mathrm{X}(5)$ and the rigid rotor.

## Contaminants

$\star^{156} \mathrm{Yb}\left(1 \times 10^{4}, 26 \mathrm{~s}\right):$ Dy $-4 \times 10^{9}$ (stable), $\mathrm{Er}-6 \times 10^{8}$ (19 min), Eu - $1.3 \times 10^{6}(15 \mathrm{~d})$
${ }^{158} \mathrm{Yb}\left(1 \times 10^{6}, 1.5 \mathrm{~min}\right): \mathrm{Dy}-2 \times 10^{9}$ (stable), $\mathrm{Ho}-1 \times 10^{10}$ (10 min), $\mathrm{Er}-6 \times 10^{8}$ (2 h), Tm $-1 \times 10^{9}$ (4 m)
$*^{160} \mathrm{Yb}\left(1 \times 10^{7}, 4.8 \mathrm{~min}\right): \mathrm{Lu}-5 \times 10^{6}(36 \mathrm{~s}), \mathrm{Tm}-1 \times 10^{8}(9 \mathrm{~min})$, Er $-4 \times 10^{8}(28 \mathrm{~h})$, Ho $-3 \times 10^{10}(25 \mathrm{~m})$
$\star{ }^{162} \mathrm{Yb}\left(1 \times 10^{8}, 19 \mathrm{~min}\right): \mathrm{Lu}-2 \times 10^{7}(1.4 \mathrm{~min}), \mathrm{Tm}-3 \times 10^{8}(24 \mathrm{~s})$
$\star^{164} \mathrm{Yb}\left(1 \times 10^{10}, 76 \mathrm{~min}\right): \mathrm{Lu}-3 \times 10^{7}(3 \mathrm{~min}), \mathrm{Tm}-4 \times 10^{7}(5 \mathrm{~min})$
${ }^{166} \mathrm{Yb}\left(3 \times 10^{8}, 57 \mathrm{~h}\right): \mathrm{Hf}-6 \times 10^{5}(7 \mathrm{~min}), \mathrm{Lu}-3 \times 10^{7}(2 \mathrm{~min})$
$\star^{168} \mathrm{Yb}\left(1 \times 10^{9}\right.$, stable) : Hf $-6 \times 10^{5}(26 \mathrm{~min}), \mathrm{Lu}-3 \times 10^{7}$ (1.4 min)

## Radiation



Long livetime $\rightarrow$ negligible $\left(\sim 3 \times 10^{-4}\right)$


Weak branch $\rightarrow$ negligible $\left(\sim 10^{-5}\right)$

## GOSIA calculations for ${ }^{160} \mathrm{Yb}$ on ${ }^{106} \mathrm{Pd}$



## Summary of requested shifts:

| Bea <br> $\mathbf{m}$ | Intensity | Target | Ion <br> source | Shifts | Laser <br> ON | Laser <br> OFF | Beam <br> purity | Counts <br> $\left(\mathbf{2}^{+} \rightarrow \mathbf{0}^{+}\right)$ | Counts <br> $\left(\mathbf{3}^{-} \rightarrow \mathbf{0}^{+}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{156} \mathrm{Yb}$ | $1 \times 10^{3}$ | Pd | Ta | - | - | - | - |  |  |
| ${ }^{158} \mathrm{Yb}$ | $1 \times 10^{5}$ | Pd | Ta | 4 | 3 | 1 | $90 \%$ | 900 | - |
| ${ }^{160} \mathrm{Yb}$ | $1 \times 10^{6}$ | Pd | Ta | 10 | 9 | 1 | $90 \%$ | 32000 | 30 |
| ${ }^{162} \mathrm{Yb}$ | $1 \times 10^{7}$ | Pd | Ta | 4 | 3 | 1 | $90 \%$ | 130000 | 130 |
| ${ }^{164} \mathrm{Yb}$ | $1 \times 10^{9}$ | Pd | Ta | 3 | 2 | 1 | $50 \%$ | 1300000 | 1300 |
| ${ }^{166} \mathrm{Yb}$ | $3 \times 10^{7}$ | Pd | Ta | 4 | 3 | 1 | $50 \%$ | 130000 | 130 |
| ${ }^{168} \mathrm{Yb}$ | $1 \times 10^{9}$ | Pd | Ta | 3 | 2 | 1 | $50 \%$ | 1300000 | 1300 |

## 28 shifts beam on target 3 shifts beam preparation 4 shifts beam change

## Thank you for your attention

