
Gaudi Event Data Model
Integration

Benedikt Hegner

FCC SW Meeting
23.10.2014

2

Driving considerations

• Integrate new I/O and Data Model as smoothly as possible

• Avoid big revolutions on Gaudi design (for now ;-))

• Take it as a chance to prepare for concurrency

• Announce data dependencies of algorithms explicitly

• Doing too late may be expensive

De-facto
dependencies in LHCb
reconstruction

Gaudi vs. CMS

EvtDataSvcIPersistencySvc

IConversionSvc

Gaudi - federation of Services

edm::Event

 input module

output module

CMSSW
Services and Algorithms

Gaudi flexible but entry level
rather high

CMS exposes some details to
the user

We will try the CMS way...
 ... but keep the EvtDataSvc

User algorithm

User algorithm

3

Gaudi + CMS mixed

EvtDataSvc

 input module

output module

User algorithm

4

Concrete Steps

• Made albers create files in Gaudi-compatible directory structure

• Made Data Model compatible with EvtDataSvc of Gaudi

• Let all Collections inherit from DataObject

• Does not spoil the benefits of the new library!

• Extended EvtDataSvc to do the required extra-bookkeeping

• Created InputAlgorithm

• Open item is creating the OutputAlgorithm

• This allows the new I/O for persistency + all other classes for
transient access

5

Announcing dependencies

Initialize handlesdeclareOutput("anOutput", m_outputHandle,”in”);
declareInput("anInput", m_inputHandle,”out”);

Constructor

OutputType* out = new OutputType();
m_outputHandle.put(out);

InputType* in = m_inputHandle.get();

::execute

#include "DataObjects/InputType.h"
#include "DataObjects/OutputType.h"

includes

DataObjectHandle<InputType> m_inputHandle;
DataObjectHandle<OutputType> m_outputHandle;

private members

put data

retrieve data

.cc file

.h file

include type headers

EvtDataSvc

“in” : InputType
“out” : OutputType

6

