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Abstract Abstract for BOOST2013 report

Keywords boosted objects · jet substructure ·
beyond-the-Standard-Model physics searches · Large

Hadron Collider

1 Introduction

The characteristic feature of collisions at the LHC is a

center-of-mass energy, 7 TeV in 2010 and 2011, of 8 TeV

in 2012, and near 14 TeV with the start of the second

phase of operation in 2015, that is large compared to

even the heaviest of the known particles. Thus these

particles (and also previously unknown ones) will often

be produced at the LHC with substantial boosts. As a

result, these particles will not be observed as multiple

jets in the detector, but rather as a single hadronic jet

with distinctive internal substructure. This realization

has led to a new era of sophistication in our understand-

ing of both standard QCD jets and jets containing the

decay of a heavy particle, with an array of new jet ob-

servables and detection techniques introduced and stud-

ies. To allow the efficient sharing of results from these

jet substructure studies a series of BOOST Workshops

have been held on a yearly basis: SLAC (2009, [?]), Ox-

ford University (2010, [?]), Princeton University Uni-

versity (2011, [?]), IFIC Valencia (2012 [?]), University

of Arizona (2013 [?]), and, most recently, University

College London (2014 [?]). After each of these meetings

Working Groups have functioned during the following

year to generate reports highlighting the most inter-

esting new results, including studies of ever maturing

details. Previous BOOST reports can be found at [1,2,

3].

The following report from BOOST 2013 thus views

the study and implementation of jet substructure tech-

niques as a fairly mature field. The report attempts to

focus on the question of the correlations between the

plethora of observables that have been developed and

employed, and their dependence on the underlying jet

parameters, especially the jet radius R and jet pT . The

report is organized as follows: NEED TO GENERATE

AN OUTLINE OF THE REPORT - ESPECIALLY AS

I UNDERSTAND IT MYSELF.

2 Monte Carlo Samples

2.1 Quark/gluon and W tagging

Samples were generated at
√
s = 8 TeV for QCD dijets

and W+W− pairs decaying hadronically off a (pseudo)

scalar resonance. The QCD events were split into sub-

samples of gg and qq̄ events, allowing for tests of both

W and quark-gluon discrimination.

Individual quark and gluon samples were produced

at leading order (LO) using MadGraph5, whileW+W−

samples were generated using the JHU Generator to

allow for separation of longitudinal and transverse po-

larizations. Both were produced in exclusive pT bins of

100 GeV and generated using CTEQ6L1 PDFs. The

slicing parameter was chosen to be the pT of any fi-

nal state parton or W . At the parton-level the pT bins

investigated were 300-400 GeV, 500-600 GeV and 1.0-

1.1 TeV. Since no matching was performed, a cut on

any parton was equivalent. These were then showered

through Pythia8 (version 8.176) using the default tune

4C.

The showered events were clustered with FastJet

3.03 using the anti-kt algorithm with jet radii of R =

0.4, 0.8, 1.2. In both signal and background an upper

and lower cut on the leading jet pT is applied after

showering/clustering, to ensure similar pT spectra for

signal and background in each bin. The bins in leading

jet pT that are investigated in the W-tagging and q/g

tagging studies are 300-450 GeV, 500-650 GeV, 1.0-1.2

TeV.

2.2 Top tagging

Samples were generated at
√
s = 14 TeV. Standard

Model dijet and top pair samples were produced with

Sherpa 2.0.0, with matrix elements with up to two ex-

tra partons matched to the shower. The top samples

included only hadronic decays and were generated in

exclusive pT bins of width 100 GeV, taking as slicing

parameter the maximum of the top/anti-top pT . The

QCD samples were generated with a cut on the leading

parton-level jet pT , where parton-level jets are clustered

with the anti-kt algorithm with jet radius R = 1.2. The

matching scale is selected to be Qcut = 40, 60, 80 GeV

for the pT min = 600, 1000, and 1500 GeV bins, respec-

tively.

The analysis again relies on FastJet 3.0.3 for jet

clustering and calculation of jet substructure observ-

ables, with the same cuts applied after showering and

clustering as for
√
s = 8 TeV data.

3 Jet Algorithms and Substructure Observables

3.1 Jet Clustering Algorithms

Jets were clustered using sequential jet clustering al-

gorithms. Final state particles i, j are assigned a mu-
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tual distance dij and a distance to the beam, diB. The

particle pair with smallest dij are recombined and the

algorithm repeated until the smallest distance is actu-

ally the distance to the beam, diB, in which case i is

set aside and labelled as a jet. The distance metrics are

defined as

dij = min(p2γ
Ti, p

2γ
Tj)

∆R2
ij

R2
, (1)

diB = p2γ
Ti, (2)

where ∆R2
ij = (∆η)2 + (∆φ)2. In this analysis, we use

the anti-kT algorithm (γ = −1), the Cambridge/Aachen

algorithm (γ = 0), and the kT algorithm (γ = 1),

each of which has varying sensitivity to soft radiation

in defining the jet. add citations

We also perform non-deterministic jet clustering called

Qjets [?]. Instead of always clustering the particle pair

with smallest distance dij , the pair selected for combi-

nation is chosen probabilistically according to a mea-

sure

Pij ∝ e−αdij/dmin , (3)

where dmin is the minimum distance for the usual jet

clustering algorithm at a particular step. The parame-

ter α is called the stiffness and is used to control how

sharply peaked the probability distribution is around

the “classical” value. Qjets uses statistical methods to

extract more information from the jet than can be found

in the usual cluster sequence. In our analyses, we use

α = 0.1.

3.2 Jet Substructure Observables

In this section, we describe the observables that we con-

sider in this study. Originally we considered a larger set

of observables but in the final analysis we reduced re-

dundant observables in the final set for presentation

purposes.

Quark/gluon discrimination: The list of observables

is as follows:

– mass: this is the plain jet mass

– 1-subjettiness, τβ1 : the N-subjettiness uses one-pass

kT axis optimization where we consider β = 1, 2

– 1-point energy correlation functions, Cβ1 : the energy

correlation functions consider β = 0, 1, 2

– Qjet volatility, ΓQjet: the number of trees consid-

ered is Ntrees = 25, the rigidity factor is α = 0.1,

the truncation factor is 0.01, and the pruning pa-

rameters are Dcut = 0.5 and zcut = 0.1

– number of constituents (Nconstits)

W vs. gluon discrimination: The list of observables

is as follows:

– mass: same as in the q vs. g case

– trimmed mass, mtrimmed: the parameter values are

fcut = 0.03 and rfilt = 0.2

– pruned mass,mpruned: the parameter values areDcut =

0.5 and zcut = 0.1

– soft drop mass, mβ
softdrop: zcut is set always to 0.1,

we consider β = 0, 2 where β = 0 is a generalization

of the modified mass drop tagger

– 2-point energy correlation functions, Cβ=1
2 : we also

considered β = 2 but it showed poor discrimination

power

– N-subjettiness ratio, τ2/τ1(β = 2): the N-subjettiness

uses one-pass kT axis optimization, we also consid-

ered β = 2 but it showed poor discrimination power

– Qjet volatility: same as in the q vs. g case

Top vs. QCD discrimination: We now describe the

list of observables/taggers considered for top tagging.

Note that for trimming, the subjet identification is opti-

mized for identifying soft radiation, not for reconstruct-

ing the hard decay products of the top. Pruning does

not even contain an inherent subject identification step.

For both trimming and pruning, we introduce an arbi-

trary method for reconstructing the subjets correspond-

ing to the b and W decay products for a fair comparison

with other top taggers, but the W reconstruction is con-

sequently poorer than for algorithms that are optimized

for W identification inside the top.

Johns Hopkins Tagger: Re-cluster the jet using the

Cambridge/Aachen algorithm. The jet is iteratively de-

clustered, and at each step the softer prong is discarded

if its pT is less than δp pT jet. This continues until both

prongs are harder than the pT threshold, both prongs

are softer than the pT threshold, or if they are too close

(|∆ηij |+ |∆φij | < δR); the jet is rejected if either of the

latter conditions apply. If both are harder than the pT

threshold, the same procedure is applied to each: this

results in 2, 3, or 4 subjets. If there exist 3 or 4 subjets,

then the jet is accepted: the top candidate is the sum

of the subjets, and W candidate is the pair of subjets

closest to the W mass. The output of the tagger is mt,

mW , and θh, a helicity angle defined as the angle, mea-

sured in the rest frame of the W candidate, between

the top direction and one of the W decay products.

HEPTopTagger: Re-cluster the jet using the

Cambridge/Aachen algorithm. The jet is iteratively de-

clustered, and at each step the softer prong is discarded

if m1/m12 > µ (there is not a significant mass drop).

Otherwise, both prongs are kept. This continues un-

til a prong has a mass mi < m, at which point it is
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added to the list of subjets. Filter the jet using Rfilt =

min(0.3, ∆Rij) (where ∆Rij is the distance between the

two hardest subjets). Select the three subjets whose in-

variant mass is closest to mt. The output of the tagger

is mt, mW , and θh, a helicity angle defined as the angle,

measured in the rest frame of the W candidate, between

the top direction and one of the W decay products.

Trimming: Re-cluster the jet using the kT algorithm

and radius Rtrim. Discard all subjets with pT sj/pT jet <

fcut. A W candidate is reconstructed as follows: if there

are two subjets, the highest-mass subjet is the W can-

didate; if there are three subjets, the two subjets with

the smallest invariant mass comprise the W candidate.

In the case of only one subjet, no W is reconstructed.

Pruning: Re-cluster the jet using the Cambridge-Aachen

algorithm. At each step, discard the softer branch if

min(pT1, pT2)/pT12 < zcut and∆R12 > 2Rcutmjet/pT, jet.

Subjets are found by de-clustering the pruned jet by up

to three splittings. A W candidate is reconstructed as

follows: if there are two subjets, the highest-mass sub-

jet is the W candidate; if there are three subjets, the

two subjets with the smallest invariant mass comprise

the W candidate. In the case of only one subjet, no W

is reconstructed.

4 Multivariate Analysis Techniques

Put in description of BDT methods here (Nhan?)

5 Quark-Gluon Discrimination

In this section we examine the differences between quark

and gluon initiated jets in terms of the substructure

variables, and to what extent these variables are corre-

lated. Along the way, we attempt to provide some the-

oretical understanding of these observations. The moti-

vation for these studies comes not only from the desire

to “tag” a jet as being quark or gluon initiated, but also

from the point of view of understanding the quark and

gluon components of the QCD background to boosted

boson and boosted top tagging.

5.1 Methodology

These studies use the qq and gg samples, described pre-

viously in Section 2. Jets are reconstructed using the

anti-kT algorithm with radius parameters of 0.4, 0.8 and

1.2, and have various jet grooming approaches applied,

as described in Section ??. Only leading and subleading

jets in each sample are used.

Figure 1 shows a comparison of the quark and gluon

samples pT and η distributions for the sample used to

study jets of pT = 500 − 600 GeV. The differences in

the pT distributions can be attributed to different out-

of-cone radiation patterns for quark and gluons, while

the different η distributions are related to the different

parton density functions involved in qq and gg produc-

tion. The qualitative features of the η distributions do

not change as the R parameter is changed. As the pT
increases, the η distributions peak more strongly near

zero, as expected. Differences in the pT distributions

between the leading and sub-leading (and quark and

gluon-induced) jets become smaller as the R parameter

is increased, as expected from the physics behind these

differences, outlined above.

5.2 Single Variable Discrimination

Figure 2 shows the mass of jets in the quark and gluon

samples when using different groomers, and Figure 3

shows similar comparisons for different substructure vari-

ables. Jets built with the anti-kT algorithm with R=0.8

and with pT = 500 − 650 GeV are used. Qualitatively,

the application of grooming shifts the mass distribu-

tions towards lower values as expected. No clear gain

in discrimination can be seen, and for certain grooming

parameters, such as the use of soft drop with β = −1 a

clear loss in discrimination power is observed. Few vari-

ations are observed as the radius parameter of the jet

reconstruction is increased in the two highest pT bins.

However, for the 300− 400 GeV bin, the use of small-R

jets produces a shift in the mass distributions towards

lower values, so that large-R jet masses are more stable

with pT and small-R jet masses are smaller at low-pT
as expected from the spatial constraints imposed by

the R parameter. These statements are explored more

quantitatively later in this section.

Among the different substructure variables explored,

nconstits provides the highest separation power, followed

by Cβ=0
1 and Cβ=1

1 as was also found by the CMS

and ATLAS Collaborations [add citations]. The evo-

lution of some of these distributions with pT and R is

a bit more interesting than what was discussed for the

jet mass. In particular, changing the R parameter at

high pT changes significantly the Cβa for β > 0 and

the nconstits distributions, while leaving all other dis-

tributions qualitatively unchanged. This is illustrated

in Figure 4 for β = 0 and β = 1 using a = 1 in

both cases for jets with pT = 1 − 1.2 TeV. The shift

towards lower values with changing R is evident for

the Cβ=1
1 distributions, while the stability of Cβ=0

1 can
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(a) Leading jet pT (b) Sub-leading jet pT

(c) Leading jet η (d) Sub-leading jet η

Fig. 1 Comparisons of quark and gluon pT and η distributions in the sample used for the jets of pT = 500−600 GeV bin using
the anti-kT R=0.8 algorithm.

also be observed. These features are present in all pT
bins studied, but are even more pronounced for lower

pT bins. The shape of the Q-jet volatility distribution

shows some non-trivial shape that deserves some expla-

nation. Two peaks are observed, one at low volatility

values and one at mid-volatility. These peaks are gen-

erated by two somewhat distinct populations. The high

volatility peak arises from jets that get their mass pri-

marily from soft (and sometimes wide-angle) emissions.

The removal of some of the constituents when building

Q-jets thus changes the mass significantly, increasing

the volatility. The lower volatility peak corresponds to

jets for which mass is generated by a hard emission,

which makes the fraction of Q-jets that change the mass

significantly to be smaller. Since the Sudakov form fac-

tors are larger for gluon jets, the low-volatility peak is

higher for gluon jets by about the color factor CA/CF .

In order to be more quantitative about these results

and the power of each variable as a discriminator for

quark/gluon tagging, ROC curves are built by scan-

ning each distribution and plotting the background ef-

ficiency (efficiency to select gluon jets) vs the efficiency

for quark selection. Figure 5 shows these ROC curves

for all of the variables shown in Figure 3 and the un-

groomed mass, representing the best performing mass

variable, for jets of pT = 300 − 400 GeV. In addition,

the ROC curve for the tagger built from a BDT com-
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(a) Ungroomed mass (b) Pruned mass (c) Trimmed mass

(d) mMDT mass (e) Soft-drop β = 2 mass (f) Soft-drop β = −1 mass

Fig. 2 Comparisons of ungroomed and groomed quark and gluon mass distributions for leading jets in the pT = 500−650 GeV
bin using the anti-kT R=0.8 algorithm.

bining all the variables. The details of how the BDT is

constructed are explained in Section 5.3.

Clearly, nconstits is the best performing variable for

all Rs, even though Cβ=0
1 is close, particularly for R=0.8.

Most other variables have similar performance, except

the Q-jet volatility, which shows significantly worse dis-

crimination. The combination of all variables shows some-

what better discrimination. The overall discriminating

power decreases with increasing R, and the features dis-

cussed for this pT bin also apply to the higher pT bins.

This statement is quantified in the next section.

5.3 Correlations and Combined Performance

The combined performance displayed in Fig. 5 is not

much better than that of single variables. However,

that improvement in performance can be critical for

certain analyses using a quark/gluon tagger, and po-

tentially larger in data than in Monte Carlo simula-

tion. Furthermore, insight can be gained into the fea-

tures allowing for quark/gluon discrimination if how

that improvement arises is understood. For that reason,

it is worth investigating quantitatively the improve-

ments in performance. To that purpose, quark/gluon

taggers are built from every pair-wise combination of

variables studied in the previous section, as well as the

full set of variables using a boosted decision tree.

[Paragraph describing details of BDT]

In order to quantitatively study the value of each

variable for quark/gluon tagging, the gluon rejection,

defined as 1/εgluon, is studied at a fixed quark selec-

tion efficiency of 50%. Figure 6 shows that rejection

for each individual variable (along the diagonal of the

plots) and for each pair-wise combination. The rejec-

tion for the BDT combining all variables is also shown

on the bottom right of each plot. Results are shown

for jets with pT = 1 − 1.2 TeV and for different R pa-

rameters. As already observed in the previous section,

nconstits is the most powerful single variable and C
(β=0)
1

follows closely. The combination of the two variables

is also one of the most powerful combinations for the

two large-R collections. However, those collections are

clearly outperformed by the small-R collection, and in

that case other pair-wise combinations are more pow-
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(a) Cβ=0
1 (b) Cβ=1

1 (c) Cβ=2
1

(d) ΓQjet (e) nconstits (f) τβ=1
1

(g) τβ=2
1

Fig. 3 Comparisons of quark and gluon distributions of different substructure variables for leading jets in the pT = 500 −
650 GeV bin using the anti-kT R=0.8 algorithm.

erful. In particular, the combinations of τβ=1
1 or C

(β=1)
1

with nconstits are capable of getting very close to the

rejection achievable through the use of all variables.

The overall loss in performance with increasing R

can be observed in all single variables studied, except

for C
(β=0)
1 and the Q-jet volatility, which are quite re-

silient to increasing R. This is expected, since their dis-

tributions were observed to be also quite insensitive to

R in the previous section. Their combination, however,

does lose performance significantly as R is increased.

[do we understand this?] Of all the variables stud-

ied, β = 2 subjetiness and energy correlation variables

are particularly sensitive to increasing R. This is un-

derstandable, because for β = 2 a larger weight is put

in large-angle emissions. However, from other variables,

it is understood that most of the discrimination power

comes from analyzing a small-R jet, or the center of the

large-R jet.
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(a) Cβ=0
1 , R = 0.4 (b) Cβ=0

1 , R = 0.8 (c) Cβ=0
1 , R = 1.2

(d) Cβ=1
1 , R = 0.4 (e) Cβ=1

1 , R = 0.8 (f) Cβ=1
1 , R = 1.2

Fig. 4 Comparisons of quark and gluon distributions of Cβ=0
1 (top) and Cβ=1

1 (bottom) for leading jets in the pT = 1−1.2 TeV
bin using the anti-kT algorithm with R=0.4,0.8 and 1.2.

Fig. 5 The ROC curve for all single variables considered for quark-gluon discrimination in the pT 500 GeV bin using the
anti-kT R=0.8 algorithm.

These observations are qualitatively similar across

all ranges of pT . Quantitatively, however, there is a loss

of rejection power for the taggers made of a combina-

tion of variables as the pT decreases. This can be ob-

served in Fig. 7 for anti-kT R=0.4 jets of different pT s.

Clearly, most single variables retain their gluon rejec-

tion potential at lower pT s. However, when combined

with other variables, the highest performing pairwise

combinations lose ground with respect to other pair-

wise combinations. This is also reflected in the rejection

of the tagger that uses a combination of all variables,

which is lower at lower pT s. [do we understand this?]
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Fig. 6 Gluon rejection defined as 1/εgluon when using each 2-variable combination as a tagger with 50% acceptance for quark
jets. Results are shown for jets with pT = 1 − 1.2 TeV and for different R parameters. The rejection obtained with a tagger
that uses all variables is also shown in the plots.

Fig. 7 Gluon rejection defined as 1/εgluon when using each 2-variable combination as a tagger with 50% acceptance for quark
jets. Results are shown for R=0.4 jets with pT = 300 − 400 GeV, pT = 500 − 600 GeV and pT = 1 − 1.2 TeV. The rejection
obtained with a tagger that uses all variables is also shown in the plots.

6 Boosted W -Tagging

In this section we study the performance of various

groomed jet masses, substructure variables, and BDT

combinations of groomed mass and substructure, in terms

of the identification of a boosted hadronically decaying

W signal aginst a gluon-gluon background. We produce

Receiver Operating Characteristic (ROC) curves that

elucidate the performance of the various groomed mass

and substructure variables that are capable of providing

discrimination between signal and background. A range

of different distance parameter settings for the anti-

kT jet algorithm are explored, in a variety of kinematic

regimes (lead jet pT 300-450 GeV, 500-650 GeV, 1.0-1.2

TeV), to explore the performance as a function of jet

radius and jet boost, and to see where substructure ap-

proaches may break down. The groomed mass and sub-

structure variables are then combined in a Boosted De-

cision Tree (BDT), and the performance of the result-

ing BDT discriminant explored through ROC curves

to understand the degree to which variables are cor-

related and exploiting the same information, and how

this changes with jet boost and jet radius.

6.1 Methodology

These studies use the X → WW samples as signal

and the gg samples to model the QCD background,

described previously in Section 2. Whilst only gluonic

backgrounds are explored here, the conclusions as to

the dependence of the performance and correlations on

the jet boost and radius have been verified to hold also

for qq backgrounds. To be checked!

Jets are reconstructed using the anti-kT algorithm,

and have various jet grooming approaches applied, as

described in Section ??. The following event selection

is then applied to these samples....(presumably this will

vary depending on which kinematic bin is used, as will

the actual samples used - maybe summarize in a table).

Figure 8 shows a comparison of the leading jet pT
for the signal and background in the pT 300-450 GeV

bin, for the two different anti-kT jet algorithm distance

parameters explored in this bin (R=0.8 and R=1.2).

Figures 9 and 10 show the same for the pT 500-650

GeV bin and pT 1.0-1.2 TeV bin respectively, where for

the pT 1.0-1.2 TeV bin the distance parameter R=0.4

is also explored.
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(a) anti-kT R=0.8 (b) anti-kT R=1.2

Fig. 8 Comparisons of the leading jet pT spectrum of the gg background to the WW signal in the pT 300-450 GeV bin using
the different anti-kT jet distance parameters explored.

(a) anti-kT R=0.8 (b) anti-kT R=1.2

Fig. 9 Comparisons of the leading jet pT spectrum of the gg background to the WW signal in the pT 500-650 GeV bin using
the different anti-kT jet distance parameters explored.

(a) anti-kT R=0.4 (b) anti-kT R=0.8 (c) anti-kT R=1.2

Fig. 10 Comparisons of the leading jet pT spectrum of the gg background to the WW signal in the pT 1.0-1.2 TeV bin using
the different anti-kT jet distance parameters explored.
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Go on to explain how we produce the ROC curves,

how the BDT training is done etc.

6.2 Single Variable Performance

In this section we will explore the performance of the

various groomed jet mass and substructure variables in

terms of discriminating signal and background, and how

this performance changes depending on the kinematic

bin and jet radius considered.

Figure 11 the compares the signal and background

in terms of the different groomed masses explored for

the anti-kT R=0.8 algorithm in the pT 500-650 bin. One

can clearly see that in terms of separating signal and

background the groomed masses will be significantly

more performant than the ungroomed anti-kT R=0.8

mass. Figure 12 compares signal and background in the

different substructure variables explored for the same

jet radius and kinematic bin.

Figures 13,14 and 15 show the single variable ROC

curves compared to the ROC curve for a BDT combi-

nation of all the variables (labelled “allvars”), for each

of the anti-kT distance parameters considered in each

of the kinematic bins. One can see that, in all cases,

the “allvars” option is considerably more performant

than any of the individual single variables considered,

indicating that there is considerable complementarity

between the variables, that will be explored further in

the next section.

Although the ROC curves give all the relevant in-

formation, it is hard to compare performance quanti-

tatively. In Figures 16, 17 and 18 are shown matrices

which give the background rejection for a signal effi-

ciency of 50% when two variables (that on the x-axis

and that on the y-axis) are combined in a BDT. These

are shown separately for each pT bin and jet radius

considered. The diagonal of these plots correspond to

the background rejections for a single variable BDT,

and can thus be examined to get a quantitative mea-

sure of the individual single variable performance, and

to study how this changes with jet radius and momenta.

One can see that in general the most performant

single variables are the groomed masses. However, in

certain kinematic bins and for certain jet radii, Cβ=1
2

has a background rejection that is comparable to or

better than the groomed masses.

By comparing Figures 16(a), 17(a) and 18(b), we

can see how the background rejection performance evolves

as we increase momenta whilst keeping the jet radius

fixed to R=0.8. Similarly, by comparing Figures 16(b), 17(b)

and 18(c) we can see how performance evolves with

pT for R=1.2. The background rejection power of the

groomed masses increases slowly with increasing pT ,

with at most a factor two increase in rejection in going

from the 300-450 GeV to 1.0-1.2 TeV bins. However, for

a jet radius of R=0.8, the rejection power of Cβ=1
2 in-

creases dramatically with pT , by a factor of 7 in going

from the 300-450 GeV to 1.0-1.2 TeV bins. Can we ex-

plain this? Conversely, the background rejection of the

other substructure variables (ΓQjet and τβ=1
21 ) slowly

reduces with increasing pT , at most decreasing by a

factor of two.

By comparing the individual sub-figures of Figures 16, 17

and 18 we can see how the background rejection perfor-

mance depends on jet radius within the same pT bin.

To within 40%, the background rejection power of the

groomed masses remains constant with respect to the

jet radius. However, we again see rather different be-

haviour for the substructure variables. In all pT bins

considered the most performant substructure variable,

Cβ=1
2 , performs best for an anti-kT distance parameter

of R=0.8. The performance of this variable is dramat-

ically worse for the larger jet radius of R=1.2 (more

than an order of magnitude worse background rejec-

tion in the 1.0-1.2 TeV bin), and substantially worse for

R=0.4. For the other jet substructure variables consid-

ered, their background rejection power also reduces for

larger jet radius. Insert some nice discussion/explanation

of why jet substructure power generally gets worse as we

go to large jet radius, but groomed mass performance

does not.

6.3 Combined Performance

The off-diagonal entries in Figures 16, 17 and 18 can
be used to compare the performance of different BDT

two-variable combinations, and see how this varies as

a function of pT and R. By comparing the background

rejection achieved for the two-variable combinations to

the background rejection of the “all variables” BDT,

one can understand how much more discrimination is

possible by adding further variables to the two-variable

BDTs.

One can see that in general the most powerful two-

variable combinations involve a groomed mass and a

non-mass substructure variable (Cβ=1
2 , ΓQjet or τβ=1

21 ).

Two-variable combinations of the substructure variables

are not powerful in comparison. The background rejec-

tion of the most powerful mass + substructure combi-

nation comes very close to that achieved in the “all vari-

ables” case, indicating that there is little to be gained

by making a BDT that is more complex, and that there

is little more complementary information available, at

least in terms of that which is offered by the variables

considered here.
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(a) Ungroomed mass (b) Pruned mass (c) Trimmed mass

(d) mMDT mass (e) Soft-drop β = 2 mass

Fig. 11 Comparisons of the QCD background to the WW signal in the pT 500-650 GeV bin using the anti-kT R=0.8 algorithm:
leading jet mass distributions.

One can also see that there is a modest improvement

in the background rejection when different groomed

masses are combined, compared to the single variable

groomed mass performance, indicating that there is com-

plementary information between the different groomed

masses. There is also an improvement in the background

rejection when the groomed masses are combined with

the ungroomed mass, indicating that grooming removes

some useful discriminatory information from the jet.

6.3.1 Dependence on pT

6.3.2 Dependence on R
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(a) Cβ=1
2 (b) Cβ=2

2 (c) ΓQjet

(d) τβ=1
21 (e) τβ=2

21

Fig. 12 Comparisons of the QCD background to the WW signal in the pT 500-650 GeV bin using the anti-kT R=0.8 algorithm:
substructure variables.

(a) anti-kT R=0.8, pT 300-450 GeV bin (b) anti-kT R=1.2, pT 300-450 GeV bin

Fig. 13 The ROC curve for all single variables considered for W tagging in the pT 300-450 GeV bin using the anti-kT R=0.8
algorithm and R=1.2 algorithm.



14 BOOST2013 participants

(a) anti-kT R=0.8, pT 500-650 GeV bin (b) anti-kT R=1.2, pT 500-650 GeV bin

Fig. 14 The ROC curve for all single variables considered for W tagging in the pT 500-650 GeV bin using the anti-kT R=0.8
algorithm and R=1.2 algorithm.

(a) anti-kT R=0.4, pT 1.0-1.2 TeV bin (b) anti-kT R=0.8, pT 1.0-1.2 TeV bin

(c) anti-kT R=1.2, pT 1.0-1.2 TeV bin

Fig. 15 The ROC curve for all single variables considered for W tagging in the pT 1.0-1.2 TeV bin using the anti-kT R=0.4
algorithm, anti-kT R=0.8 algorithm and R=1.2 algorithm.
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(a) anti-kT R=0.8, pT 300-450 GeV bin (b) anti-kT R=1.2, pT 300-450 GeV bin

Fig. 16 The background rejection for a fixed signal efficiency (50%) of each BDT combination of each pair of variables
considered, in the pT 300-450 GeV bin using the anti-kT R=0.8 algorithm and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.

(a) anti-kT R=0.8, pT 500-650 GeV bin (b) anti-kT R=1.2, pT 500-650 GeV bin

Fig. 17 The background rejection for a fixed signal efficiency (50%) of each BDT combination of each pair of variables
considered, in the pT 500-650 GeV bin using the anti-kT R=0.8 algorithm and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.
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(a) anti-kT R=0.4, pT 1.0-1.2 TeV bin (b) anti-kT R=0.8, pT 1.0-1.2 TeV bin

(c) anti-kT R=1.2, pT 1.0-1.2 TeV bin

Fig. 18 The background rejection for a fixed signal efficiency (50%) of each BDT combination of each pair of variables
considered, in the pT 1.0-1.2 TeV bin using the anti-kT R=0.4, R=0.8 and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.
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7 Top Tagging

In this section, we study the identification of boosted

top quarks at Run II of the LHC. Boosted top quarks

result in large-radius jets with complex substructure,

containing a b-subjet and a boosted W . The additional

kinematic handles coming from the reconstruction of

the W mass and b-tagging allows a very high degree

of discrimination of top quark jets from QCD back-

grounds.

We consider top quarks with moderate boost (600-

1000 GeV), and perhaps most interestingly, at high

boost (& 1500 GeV). Top tagging faces several chal-

lenges in the high-pT regime. For such high-pT jets,

the b-tagging efficiencies are no longer reliably known.

Also, the top jet can also accompanied by additional

radiation with pT ∼ mt, leading to combinatoric ambi-

guities of reconstructing the top and W , and the pos-

sibility that existing taggers or observables shape the

background by looking for subjet combinations that re-

construct mt/mW . To study this, we examine the per-

formance of both mass-reconstruction variables, as well

as shape observables that probe the three-pronged na-

ture of the top jet and the accompanying radiation pat-

tern.

7.1 Methodology

We study a number of top-tagging strategies, in partic-

ular:

1. HEPTopTagger

2. Johns Hopkins Tagger (JH)

3. Trimming

4. Pruning

The top taggers have criteria for reconstructing a top

and W candidate, while the grooming algorithms (trim-

ming and pruning) do not incorporate aW -identification

step. For a level playing field, we construct a W candi-

date from the three leading subjets by taking the pair

of subjets with the smallest invariant mass; in the case

that only two subjets are reconstructed, we take the

mass of the leading subjet. All of the above taggers

and groomers incorporate a step to remove pile-up and

other soft radiation.

We also consider the performance of jet shape ob-

servables. In particular, we consider the N -subjettiness

ratios τβ=1
32 and τβ=1

21 , energy correlation function ra-

tios Cβ=1
3 and Cβ=1

2 , and the Qjet mass volatility Γ . In

addition to the jet shape performance, we combine the

jet shapes with the mass-reconstruction methods listed

above to determine the optimal combined performance.

For determining the performance of multiple vari-

ables, we combine the relevant tagger output observ-

ables and/or jet shapes into a boosted decision tree

(BDT), which determines the optimal cut. Addition-

ally, because each tagger has two inputs (list, or maybe

refer back to Section 3), we scan over reasonable values

of the inputs to determine the optimal value for each

top tagging signal efficiency. This allows a direct com-

parison of the optimized version of each tagger. The

input values scanned for the various algorithms are:

– HEPTopTagger: m ∈ [30, 100] GeV, µ ∈ [0.5, 1]
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– JH Tagger: δp ∈ [0.02, 0.15], δR ∈ [0.07, 0.2]

– Trimming: fcut ∈ [0.02, 0.14], Rtrim ∈ [0.1, 0.5]

– Pruning: zcut ∈ [0.02, 0.14], Rcut ∈ [0.1, 0.6]

7.2 Single-observable performance

We start by investigating the behaviour of individual

jet substructure observables. Because of the rich, three-

pronged structure of the top decay, it is expected that

combinations of masses and jet shapes will far out-

perform single observables in identifying boosted tops.

However, a study of the top-tagging performance of sin-

gle variables facilitates a direct comparison with the W

tagging results in Section 6, and also allows a straight-

forward examination of the performance of each observ-

able for different pT and jet radius.

Fig. 19 shows the ROC curves for each of the top-

tagging observables, with the bare jet mass also plot-

ted for comparison. Unlike W tagging, the jet shape

observables perform more poorly than jet mass. (Check

reasoning: this argument due to Andrew Larkoski). As

an example illustrating why this is the case, consider

N -subjettiness. The W is two-pronged and the top is

three-pronged; therefore, we expect τ21 and τ32 to be

the best-performant N -subjettiness ratio, respectively.

However, τ21 also contains an implicit cut on the de-

nominator, τ1, which is strongly correlated with jet

mass. Therefore, τ21 combines both mass and shape in-

formation to some extent. By contrast, and as is clear

in Fig.19(a), the best shape for top tagging is τ32, which

contains no information on the mass. Therefore, it is un-

surprising that the shapes most useful for top tagging

are less sensitive to the jet mass, and under-perform rel-

ative to the corresponding observables for W tagging.

Of the two top tagging algorithms, the Johns Hop-

kins (JH) tagger out-performs the HEPTopTagger in its

signal-to-background separation of both the top and W

candidate masses, with larger discrepancy at higher pT
and larger jet radius. In Fig. 20, we show the histograms

for the top mass output from the JH and HEPTop-

Tagger for different R, optimized at a signal efficiency

of 30%. The likely reason for this behavior is that, in

the HEPTopTagger algorithm, the jet is filtered to se-

lect the five hardest subjets, and then three subjets are

chosen which reconstruct the top mass. This require-

ment tends to shape a peak in the QCD background

around mt for the HEPTopTagger, while the JH tagger

has no such requirement. It has been suggested by An-

ders et al. [4] that performance in the HEPTopTagger

may be improved by selecting the three subjets recon-

structing the top only among those that pass the W

mass constraints, which somewhat reduces the shaping

of the background. Note that both the JH tagger and

the HEPTopTagger are superior at using the W can-

didate inside of the top for signal discrimination; this

is because the the pruning and trimming algorithms do

not have inherent W -identification steps and are not

optimized for this purpose.

We also directly compare the performance of top

mass and jet shape observables for different jet pT and

radius. The input parameters of the taggers, groomers,

and shape variables are separately optimized for each

pT and radius:

pT comparison: We compare various top tagging ob-

servables for jets in different pT bins and R = 0.8 in

Figs. 21 and 24. The tagging performance of jet shapes

do not change substantially with pT . τ
(β=1)
32 and the

Qjet volatility Γ have the most variation and tend to

degrade with higher pT (see Fig. 22-23). This makes

sense, as higher-pT QCD jets have more, harder emis-

sions within the jet, giving rise to substructure that

fakes the signal. By contrast, most of the top mass ob-

servables have superior performance at higher pT due

to the radiation from the top quark becoming more col-

limated. The notable exception is the HEPTopTagger,

which degrades at higher pT , likely in part due to the

background-shaping effects discussed earlier.

R comparison: We compare various top tagging ob-

servables for jets of different R and pT = 1.5− 1.6 TeV

in Figs. 25-29. Most of the top-tagging parameters per-

form best for smaller radius; this is because, at such

high pT , most of the radiation from the top quark is

confined within R = 0.4, and having a larger jet radius

makes the observable more susceptible to contamina-

tion from the underlying event and other uncorrelated

radiation. As we show in Figs. 26-28, the distributions

for both signal broaden with increasing R, degrading

the discriminating power. For C
(β=1)
2 and C

(β=1)
3 , the

background distributions are shifted upward as well.

The discriminating power generally gets worse with in-

creasingR, except for C
(β=1)
3 , which performs optimally

at R = 0.8; in this case, the signal and background hap-

pen to have the same distribution around R = 0.4, and

so R = 0.8 gives superior performance. Is this really due

to lack of 3-pronged structure in jet, or is it just luck?

7.3 Performance of multivariable combinations

We now consider various combinations of the observ-

ables from Section 7.2. In particular, we consider the

performance of individual taggers such as the JH tagger

and HEPTopTagger, which output information about

the t and W candidate masses and the helicity angle;

groomers, such as trimming and pruning, which remove
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Fig. 19 Comparison of single-variable top-tagging performance in the pT = 1−1.1 GeV bin using the anti-kT, R=0.8 algorithm.

soft, uncorrelated radiation from the top candidate to

improve mass reconstruction, and to which we have
added a W reconstruction step; and the combination of

the above taggers/groomers with shape variables such

as N -subjettiness ratios and energy correlation ratios.

For all observables with tuneable input parameters, we

scan and optimize over realistic values of such parame-

ters.

Link to discussion of BDT methods

Fig. 30 shows our main results for the multivariable

combinations; in all cases, we also show the ungroomed

jet mass as a baseline comparison. In Fig. 30(a), we di-

rectly compare the performance of the HEPTopTagger,

the JH tagger, trimming, and grooming. Generally, we

find that pruning, which does not naturally incorporate

subjets into the algorithm, does not perform as well

as the others. Interestingly, trimming, which does in-

clude a subjet-identification step, performs comparably

to the HEPTopTagger over much of the range, possi-

bly due to the background-shaping observed in Section

7.2. By contrast, the JH tagger outperforms the other

algorithms.

To determine whether there is complementary in-

formation in the mass outputs from different top tag-

gers, we also consider a multivariable combination of all

of the JH and HEPTopTagger outputs. The maximum

efficiency of the combined JH and HEPTopTaggers is

limited, as some fraction of signal events inevitably fails

either one or other of the taggers. We do see a 20-50%

improvement in performance when combining all out-

puts, which suggests that the different algorithms used

to identify the t and W for different taggers contains

complementary information.

In Fig. 30(b)-(d), we present the results for multi-

variable combinations of top tagger outputs with and

without shape variables. We see that, for both the HEP-

TopTagger and the JH tagger, the shape observables

contain additional information uncorrelated with the

masses and helicity angle, and give on average 2-3 im-

provement in signal discrimination. We see that, when

combined with the tagger outputs, both the energy cor-
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(a) Johns Hopkins Tagger, R = 0.4
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(b) HEPTopTagger, R = 0.4
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(c) Johns Hopkins Tagger, R = 0.8
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(d) HEPTopTagger, R = 0.8
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(e) Johns Hopkins Tagger, R = 1.2
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(f) HEPTopTagger, R = 1.2

Fig. 20 Comparison of top mass reconstruction with the JH and HEPTopTaggers at different R using the anti-kT algorithm,
pT = 1.5−1.6 TeV. Each histogram is shown for the working point optimized for best performance with mt at signal efficiency
0.3 and is normalized to the fraction of events passing the tagger.



Boosted objects at the LHC 21

sigε
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bk
g

ε

-410

-310

-210

-110

1

 > 1.5 TeV
T

p

 > 1.0 TeV
T

p

 > 0.6 TeV
T

p

BOOST13WG

(a) C(β=1)
2

sigε
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bk
g

ε

-410

-310

-210

-110

1

 > 1.5 TeV
T

p

 > 1.0 TeV
T

p

 > 0.6 TeV
T

p

BOOST13WG

(b) C(β=1)
3

sigε
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bk
g

ε

-410

-310

-210

-110

1

 > 1.5 TeV
T

p

 > 1.0 TeV
T

p

 > 0.6 TeV
T

p

BOOST13WG

(c) τ(β=1)
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(e) Qjet mass volatility

Fig. 21 Comparison of individual jet shape performance at different pT using the anti-kT R=0.8 algorithm.

relation functions C2+C3 and the N -subjettiness ratios

τ21 + τ32 give comparable performance, while the Qjet

mass volatility is slightly worse; this is unsurprising,

as Qjets accesses shape information in a more indirect

way from other shape observables. OK? Combining all

shape observables with a single top tagger provides even

more enhancement in discrimination power.

We directly compare the performance of the JH and

HEPTopTaggers in Fig. 30(d). Combining the taggers

with shape information nearly erases the difference be-

tween the tagging methods observed in Fig. 30(a); this

indicates that combining the shape information with

the HEPTopTagger identifies the differences between

signal and background missed by the tagger alone. This

also suggests that further improvement to discriminat-
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(a) ΓQjet, pT = 600 − 700 GeV
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(b) ΓQjet, pT = 1 − 1.1 TeV
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(c) ΓQjet, pT = 1.5 − 1.6 TeV

Fig. 22 Comparison of ΓQjet at R = 0.8 and different values of the pT .
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(a) τ(β=1)
21 , pT = 600 − 700 GeV
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(b) τ(β=1)
21 , pT = 1 − 1.1 TeV
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Fig. 23 Comparison of τβ=1
21 and τβ=1

32 with R = 0.8 and different values of the pT .
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Fig. 24 Comparison of top mass performance of different taggers at different pT using the anti-kT R=0.8 algorithm.

ing power may be minimal, as various multivariable

combinations are converging to within a factor of 20%

or so.

In Fig. 30(e)-(g), we present the results for mul-

tivariable combinations of groomer outputs with and

without shape variables. As with the tagging algorithms,

combinations of groomers with shape observables im-

proves their discriminating power; combinations with

τ32 + τ21 perform comparably to those with C3 + C2,

and both of these are superior to combinations with

the mass volatility, Γ . Substantial improvement is fur-

ther possible by combining the groomers with all shape

observables. Not surprisingly, the taggers that lag be-

hind in performance enjoy the largest gain in signal-

background discrimination with the addition of shape

observables. Once again, in 30(g), we find that the dif-

ferences between pruning and trimming are erased when

combined with shape information.

pT comparison: We now compare the BDT combina-

tions of tagger outputs, with and without shape vari-

ables, at different pT . The taggers are optimized over

all input parameters for each choice of pT and signal ef-

ficiency. As with the single-variable study, we consider

anti-kT jets clustered with R = 0.8 and compare the

outcomes in the pT = 500−600 GeV, pT = 1−1.1 TeV,

and pT = 1.5−1.6 TeV bins. The comparison of the tag-

gers/groomers is shown in Fig. 31. The behaviour with

pT is qualitatively similar to the behaviour of themt ob-

servable for each tagger/groomer shown in Fig. 24; this

suggests that the pT behaviour of the taggers is dom-

inated by the top mass reconstruction. As before, the

HEPTopTagger performance degrades slightly with in-

creased pT due to the background shaping effect, while

the JH tagger and groomers modestly improve in per-

formance.

In Fig. 32, we show the pT dependence of BDT

combinations of the JH tagger output combined with

shape observables. We find that the curves look nearly

identical: the pT dependence is dominated by the top

mass reconstruction, and combining the tagger outputs

with different shape observables does not substantially

change this behaviour. The same holds true for trim-

ming and pruning. By contrast, HEPTopTagger ROC
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Fig. 25 Comparison of individual jet shape performance at different R in the pT = 1.5 − 1.6 TeV bin.

curves, shown in Fig. 33, do change somewhat when

combined with different shape observables; due to the

suboptimal performance of the HEPTopTagger at high

pT , we find that combining the HEPTopTagger with

C
(β=1)
3 , which in Fig. 21(b) is seen to have some mod-

est improvement at high pT , can improve its perfor-

mance. Combining the HEPTopTagger with multiple

shape observables gives the maximum improvement in

performance at high pT relative to at low pT .

R comparison: We now compare the BDT combina-

tions of tagger outputs, with and without shape vari-

ables, at different R and pT = 1.5− 1.6 TeV. The tag-

gers are optimized over all input parameters for each

choice of R and signal efficiency, with the results shown

in Fig. 34. We find that, for all taggers and groomers,
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Fig. 26 Comparison of Cβ=1
2 and Cβ=1

3 in the pT = 1.5 − 1.6 TeV bin and different values of the anti-kT radius R.
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Fig. 27 Comparison of ΓQjet in the pT = 1.5 − 1.6 TeV bin and different values of the anti-kT radius R.
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Fig. 28 Comparison of τβ=1
21 and τβ=1

32 in the pT = 1.5 − 1.6 TeV bin and different values of the anti-kT radius R.

the performance is always best at small R; the choice

of R is sufficiently large to admit the full top quark

decay at such high pT , but is small enough to sup-

press contamination from additional radiation. This is

not altered when the taggers are combined with shape

observables; for example, in the case of the JH tagger

(Fig. 35), the R-dependence is identical for all combi-

nations. The same holds true for the HEPTopTagger,

trimming, and pruning.
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Fig. 29 Comparison of top mass performance of different taggers at different R in the pT = 1.5 − 1.6 TeV bin.
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Fig. 30 The BDT combinations in the pT = 1 − 1.1 TeV bin using the anti-kT R=0.8 algorithm. Taggers are combined with

the following shape observables: τ(β=1)
21 + τ

(β=1)
32 , C(β=1)

2 + C
(β=1)
3 , ΓQjet, and all of the above (denoted “shape”).
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Fig. 31 Comparison of BDT combination of tagger performance at different pT using the anti-kT R=0.8 algorithm.
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Fig. 32 Comparison of BDT combination of JH tagger + shape at different pT using the anti-kT R=0.8 algorithm.
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(c) HEP + Qjet mass volatility
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Fig. 33 Comparison of BDT combination of HEP tagger + shape at different pT using the anti-kT R=0.8 algorithm.
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Fig. 34 Comparison of tagger and jet shape performance at different radius at pT = 1.5-1.6 TeV.
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Fig. 35 Comparison of BDT combination of JH tagger + shape at different radius at pT = 1.5-1.6 TeV.
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7.4 Performance at Sub-Optimal Working Points

Up until now, we have re-optimized our tagger and

groomer parameters for each pT ,R, and signal efficiency

working point. In reality, experiments will choose a fi-

nite set of working points to use. How do our results

hold up when this is taken into account?

To address this concern, we replicate our analy-

ses, but only optimize the top taggers for a particu-

lar pT /R/efficiency and apply the same parameters to

other scenarios. This allows us to determine the ex-

tent to which re-optimization is necessary to maintain

the high signal-background discrimination power seen

in the top tagging algorithms we study.

Optimizing at a single pT : The shape observables

typically do not have any input parameters to optimize.

Therefore, we focus on the taggers and groomers. We

show the performance of the top taggers, with all input

parameters optimized to the pT = 1.5− 1.6 TeV values

at each efficiency, in Fig. 36. Comparing to Fig. 29, we

see that while the performance degrades slightly when

the high-pT optimized points are used at other mo-

menta, the ROC curves are consistent to within O(1),

with the performance of trimming degrading the most.

The same holds true for the BDT combinations of

the full tagger outputs (see Fig. 37). The performance

for the sub-optimal taggers does not degrade substan-

tially, with trimming seeing the largest decrease in dis-

criminating power. However, we do observe one phe-

nomenon: for taggers such as the HEPTopTagger and

JH tagger, which sometimes fail to return a top can-

didate, parameters optimized for a particular efficiency

εS at pT = 1.5 − 1.6 TeV may not find enough signal

candidates to reach the same efficiency at a different pT .

This explains why, in Fig. 37(1), the pT = 600 − 700

GeV bin curve disappears at ε ∼ 0.75, while the others

continue up to nearly one. This is not often a practi-

cal concern, as the largest gains in signal discrimina-

tion and significance are for smaller values of εS , but

it is something that must be considered when selecting

benchmark tagger parameters and signal efficiencies.

Similar behaviour holds for the BDT combinations

of taggers + shape observables, although we do not

show the plots here because they look similar to Fig. 37.

Optimizing at a single R:

We perform a similar analysis, but now optimize

tagger parameters for each signal efficiency only at R =

1.2, and then use the same parameters for smaller R.

We show the performance of the top taggers, with all

input parameters optimized to the R = 1.2 values at

each efficiency, in Fig. 38; these are to be compared with

Fig. 29. For the HEPTopTagger, which is sensitive to

the selected value of R, using the sub-optimal input pa-

rameters further degrades the performance at R = 0.4

and R = 0.8. It is not surprising that a tagger whose

top mass reconstruction is susceptible to background-

shaping at large R and pT would require a more careful

optimization of parameters to obtain the best perfor-

mance. By contrast, the performance of the JH tagger

and the grooming algorithms does not seem to suffer

from using sub-optimal input parameters.

The same holds true for the BDT combinations of

the full tagger outputs (see Fig. 39). The performance

for the sub-optimal taggers does not degrade substan-

tially, and the HEPTopTagger is now more consistent

with Fig. 34. The same behaviour holds for the BDT

combinations of tagger outputs and shape observables.

Optimizing at a single efficiency:

The strongest assumption so far is that the taggers

are reoptimized for each signal efficiency point. This is

useful for making a direct comparison of different top

tagging algorithms, but is not particularly practical for
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Fig. 36 Comparison of top mass performance of different taggers at different pT using the anti-kT R=0.8 algorithm; the tagger
inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.

the experiments. We now consider the effects when the

tagger inputs are optimized once, at εS = 0.35, and

then used to determine the full ROC curve. We do this

at pT = 1− 1.1 TeV and with R = 0.8.

The performance of each tagger, optimized only once,

is shown in Fig. 40 for cuts on the top mass and W mass,

and in Fig. 41 for BDT combinations of tagger outputs

and shape variables. In both plots, it is apparent that,

except at very small and very large signal efficiency,

optimizing the tagger gives comparable performance

to the scenario where the tagger is re-optimized for

each efficiency. Pruning appears to give especially ro-

bust signal-background discrimination without re-optimization,

possibly due to the fact that there are no absolute

distance or pT scales that appear in the algorithm.

Figs. 40-41 suggest that, while optimization at all signal

efficiencies is a useful tool for comparing different algo-

rithms, it is not necessary to achieve good top-tagging

performance in experiments.
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Fig. 37 Comparison of BDT combination of tagger performance at different pT using the anti-kT R=0.8 algorithm; the tagger
inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.
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Fig. 38 Comparison of top mass performance of different taggers at different R in the pT = 1500 − 1600 GeV bin; the tagger
inputs are set to the optimum value for R = 1.2.
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Fig. 39 Comparison of tagger and jet shape performance at different radius at pT = 1.5-1.6 TeV; the tagger inputs are set to
the optimum value for R = 1.2.
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Fig. 40 Comparison of single-variable top-tagging performance in the pT = 1−1.1 GeV bin using the anti-kT, R=0.8 algorithm;
the inputs for each tagger are optimized at the εsig = 0.35 working point.
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(h) Comparison of all Tagger+Shape

Fig. 41 The BDT combinations in the pT = 1 − 1.1 TeV bin using the anti-kT R=0.8 algorithm. Taggers are combined with

the following shape observables: τ(β=1)
21 + τ

(β=1)
32 , C(β=1)

2 +C
(β=1)
3 , ΓQjet, and all of the above (denoted “shape”). The inputs

for each tagger are optimized at the εsig = 0.35 working point.
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8 Summary & Conclusions

This report discussed the correlations between observ-

ables and looked forward to jet substructure at Run II

of the LHC at 14 TeV center-of-mass collisions eneer-

gies.
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