Boosted Higgs in gluon fusion

Ennio Salvioni UC Davis

FCC Higgs/EWSB group discussion November 24, 2014

References: Harlander and Neumann 1308.2225

Banfi, Martin and Sanz, 1308.4771

Azatov and Paul, 1309.5273

Grojean, ES, Schlaffer and Weiler 1312.3317

Schlaffer, Spannowsky, Takeuchi, Weiler and Wymant, 1405.4295

Buschmann, Englert, Goncalves, Plehn and Spannowsky, 1405.7651

See also Englert, McCullough and Spannowsky, 1310.4828

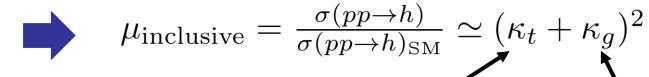
Higgs production in gluon fusion

$$\mathcal{L} = -\kappa_t \frac{m_t}{v} h t \bar{t} + \kappa_g \frac{\alpha_s}{12\pi v} h G^A_{\mu\nu} G^{A\mu\nu}$$

loops of top partners? stops? ...?

Inclusive production:

$$\mathcal{M}(gg \to h) = \begin{pmatrix} \kappa_t & \kappa_g \\ \kappa_t & \kappa_g \end{pmatrix}$$

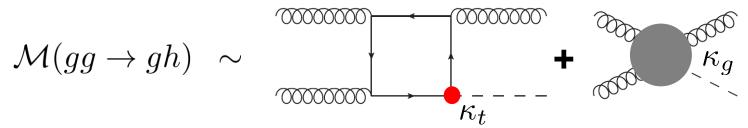

Higgs production in gluon fusion

$$\mathcal{L} = -\kappa_t \frac{m_t}{v} h t \bar{t} + \kappa_g \frac{\alpha_s}{12\pi v} h G_{\mu\nu}^A G^{A\mu\nu}$$

loops of top partners? stops? ...?

Inclusive production:

$$\mathcal{M}(gg \to h) = \begin{pmatrix} \kappa_t & \kappa_g \\ & & \\ & & \\ \end{pmatrix} \qquad (\hat{s} = m_h^2)$$


degeneracy between 'long-distance' and 'short-distance' contributions

$$\mathcal{M}_{m_t} \simeq \mathcal{M}_{\infty} \left(1 + \frac{7}{30} \frac{m_h^2}{4m_t^2} \right)$$

How to break the degeneracy and pin down κ_g ?

Boosted Higgs

Higgs recoiling against a hard jet

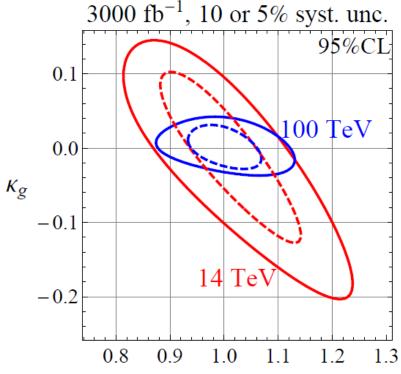
for $\,p_T\gg m_t$, resolve the top loop

same degeneracy as inclusive rate

different combination of couplings

Combining inclusive and boosted measurements breaks the degeneracy

T^{\min}	[GeV]	$\sigma_{p_{r}^{\min}}^{\mathrm{SM}}\left[\mathrm{fb}\right]$	δ	ϵ	
-	100	2180	0.0031	0.031	
	150	837	0.070	0.13	
	200	351	0.20	0.30	
	250	157	0.39	0.56	
	300	74.9	0.61	0.89	
	350	37.7	0.85	1.3	
	400	19.9	1.1	1.7	
	450	10.9	1.4	2.3	
	500	6.24	1.7	2.9	
	550	3.68	2.0	3.6	
×	600	2.22	2.3	4.4	
	650	1.38	2.6	5.2	
	700	0.871	3.0	6.2	


Breaking the degeneracy: 14 vs 100 TeV

- Rough estimate: combine boosted and inclusive measurements using
 simple χ² (no backgrounds)

 Grojean, ES, Schlaffer and Weiler
- For boosted regime consider $h \to \tau\tau$, and take ratio of cross sections to reduce theory uncertainty: 3000 fb⁻¹, 10 or 5%

$$\mathcal{R}_{14} = \frac{\sigma(p_T > 650 \,\text{GeV})}{\sigma(p_T > 150 \,\text{GeV})}$$

$$\mathcal{R}_{100} = \frac{\sigma(p_T > 2000 \,\text{GeV})}{\sigma(p_T > 500 \,\text{GeV})}$$

 K_t

• Discrimination power on κ_a improves strongly at 100 TeV

$$\sigma(p_T > 650 \text{ GeV}, 14 \text{ TeV}) \approx \sigma(p_T > 2000 \text{ GeV}, 100 \text{ TeV})$$