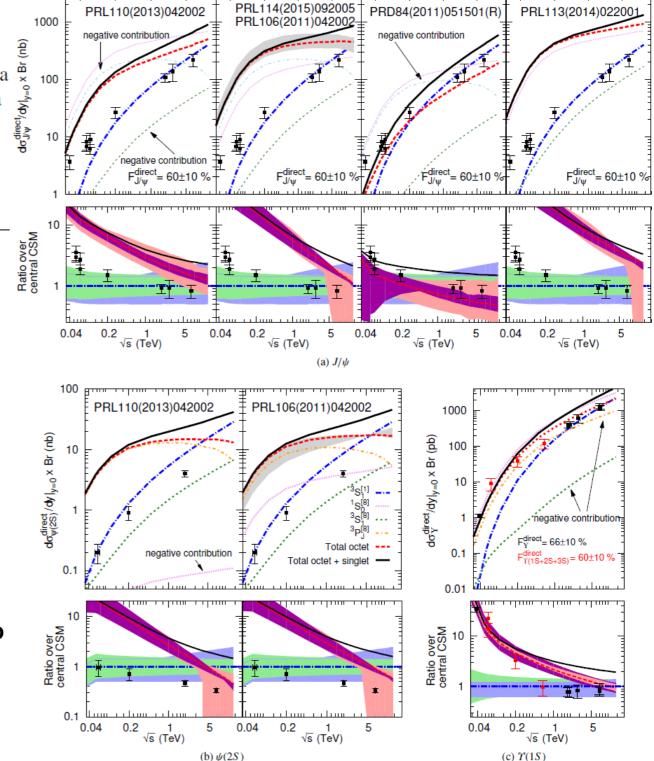
Quarkonium4AFTER: From the theory to the experiments

France	China
J.P. Lansberg (IPN)	J.X. Wang (IHEP)
C. Hadjidakis (IPN)	K.T Chao (PKU)
I. Hrivnacova (IPN)	Y. Gao (THU)
L. Massacrier (LAL)	B. Gong (IHEP)
F. Nortier (M2, IPN)	Y.Q Ma (New assoc. Prof. at PKU)
F. Scarpa (M2, IPN)	Y. Mao (PKU)
	Z. Tang (USTC)
	Z. Yang (THU)
	L. An (THU, PhD student)
	Y. Feng (IHEP, PhD student)
	+ J. He & H. S. Shao @CERN

FCPPL Workshop April 2015 USTC Hefei

Outline

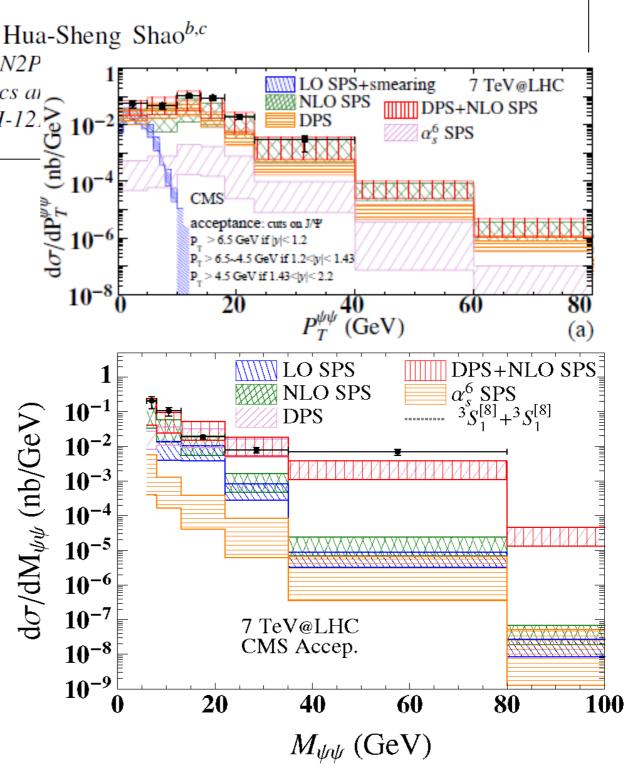

- Energy dependence of quarkonium production at NLO
- Double J/psi at the LHC and AFTER@LHC
- > AFTER@LHC
 - Internal gas target vs beam extraction with a bent crystal
 - Expected luminosities
 - First simulations
- Summary & Outlook

Theoretical activities

Energy Dependence of Direct-Quarkonium Production in *pp* Collisions from Fixed-Target to LHC Energies: Complete One-Loop Analysis

Yu Feng^{1,2}, Jean-Philippe Lansberg³, Jian-Xiong Wang^{1,2} ¹Institute of High Energy Physics, CAS, P.O.Box 918(4), Beijing, 100049, China ²Theoretical Physics Center for Science Facilities, CAS, Beijing, 100049, China ³IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France arXiv:1504.00317v1 [hep-ph] 1 Apr 2015

- First full one-loop analysis of the \sqrt{s} dependence
- NRQCD universality challenged: Colour octet not necessarily dominant
- Theoretical issues at large \sqrt{s}
- Implication for heavy-ion physics: Propagation of octet vs. singlet in the QGP
- Part of Y. Feng's PhD work



Theoretical activities I

J/ψ -Pair Production at Large Momenta: Indications for Double-Parton Scatterings and Large α_s^5 Contributions

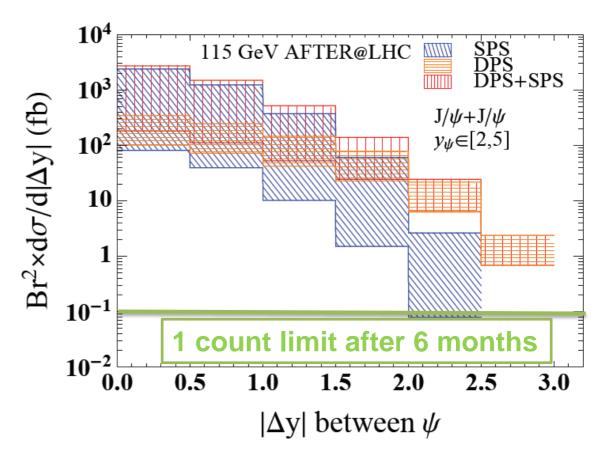
Jean-Philippe Lansberg^a, Hua-Sheng Shao^{b,c} ^a IPNO, Université Paris-Sud, CNRS/IN2P ^b Department of Physics and State Key Laboratory of Nuclear Physics an ^c PH Department, TH Unit, CERN, CH-12 arXiv:1410.8822v1 [hep-ph] 31 Oct 2014

- Solution of order-of-magnitude discrepancy with the CMS data by introducing double-parton scattering
- Derivation of relations to test DPS dominance involving quarkonium excited states (J/ψ+χ, J/ψ+ ψ')
- Computation of the first part of the NNLO (α_s^6) 's contributions

Theoretical activities III

Double quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC)

Jean-Philippe Lansberg^a, Hua-Sheng Shao^b To be submitted to arXiv


^a IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France ^b PH Department, TH Unit, CERN, CH-1211, Geneva 23, Switzerland

(Dated: March 19, 2015)

We present predictions for double quarkonium production in the kinematical region relevant for the proposed fixed-target experiment by using the LHC beams (dubbed as AFTER@LHC). These include all spin-triplet S-wave charmonium and bottomonium pairs, i.e. $\psi(n_1S) + \psi(n_2S)$, $\psi(n_1S) + \Upsilon(m_1S)$ and $\Upsilon(m_1S) + \Upsilon(m_2S)$ with $n_1, n_2 = 1, 2$ and $m_1, m_2 = 1, 2, 3$. We calculate the contributions from double-parton scatterings and single-parton scatterings. With an integrated luminosity of 20 fb⁻¹ to be collected at AFTER@LHC, we find that the yeilds for double charmonium production are large enough for differential distribution measurements. We discuss some differential distributions for $J/\psi + J/\psi$ production, which can help to study the physics of both double-parton and single-parton scatterings in a new energy range.

- Double quarkonium production measurable at AFTER@LHC
- Enough statistics for ψ+ψ to look for DPS at '*low*' energies
- Can be complemented with $\psi + D$
- Can also probe the charm content in the proton

S.J. Brodsky, J.P. Lansberg Phys.Rev.D81:051502,2010

Status report on AFTER@LHC & Connections with SMOG@LHCb

AFTER@LHC : A Fixed Target ExpeRiment @ LHC for hadron, heavy-ion and spin physics

- 3 main physics objectives :
 - Advance our understanding of the large-x
 gluon, antiquark and heavy-quark content in the nucleon & nucleus
 - Dynamics and **spin** of **gluons** inside (un)polarised nucleons
 - Heavy-ion collisions towards large rapidities

• Various ways to collide LHC beams on fixed targets :

- Beam line extracted with a bent crystal
- Beam "splitted" with a bent crystal
- Internal wire target
- Internal gas target à la SMOG-LHCb

Submission of an Expression of Interest to the LHCC in Fall 2015

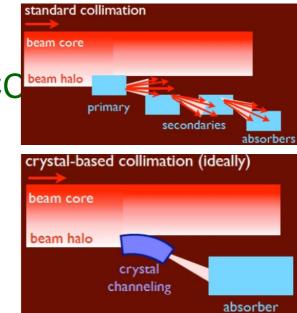
- Identify pro's and con's of these 4 fixed-target modes
- Simulations of the detector performances
- Phenomenology and benchmarking of key observables
- Novel theoretical ideas

AFTER

Low stat. data already collected by LHCb

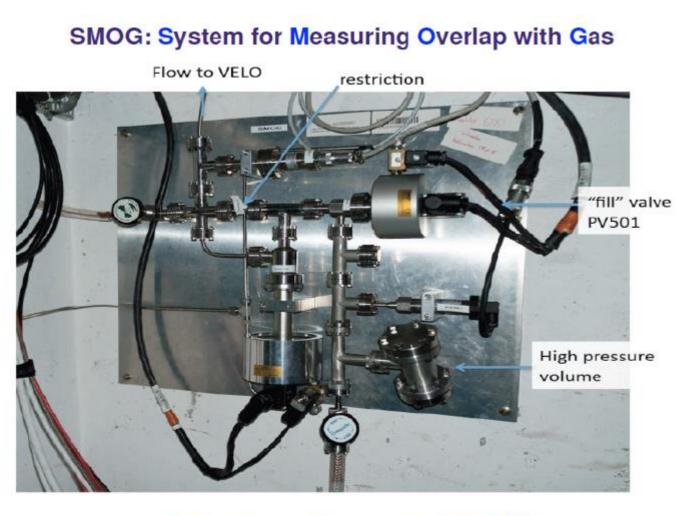
Beam extraction using a bent crystal

Beam collimation @LHC: amorphous collimator, inefficiency of 0.2% (3.5 TeV p beam) Expected bent crystal inefficiency: 0.02% UA9: test @SPS on the crystal with proton and ion beams eam core <u>LUA9</u> (beam bending experiment using crystal): approved by LHCC beam halo 2 bent crystals already installed in IR7 during LS1 2015/2016 first tests with beams rystal-based collimation (ideal


Proton beam extraction:

- Single or multi-pass extraction efficiency of 50%
- LHC beam loss ~ $10^9 p^+ s^{-1}$ extracted beam : 5 x 10⁸ p⁺ s⁻¹
- Extremely small emittance: beam size (in the extraction direction) 950m after the extraction: 0.3mm

Ion beam extraction


- Successfully tested at the SPS, should also work at the LHC
 - (P. Ballin et al, NIMB 267 (2009) 2952)

Deflecting the beam halo at 7σ distance to the beam No loss in the LHC beam

Internal gas target: SMOG@LHCb

Another way to the fixed-target mode

- Low density Ne-gas injected
 into VELO in LHCb
- pNe pilot run at √s_{NN} = 87 GeV
 in 2012
- PbNe pilot run at √s_{NN} = 54 GeV in 2013

LHCb-CONF-2012-034

→ injection of Ne-gas into VELO

- Noble gases favored (Ne, Xe, Ar, ...)
- As for now, target polarization is not possible with SMOG
- Luminosity limit to be checked
- Internal gas target can be polarized, would be another system wrt SMOG

SMOG is the ideal test ground for AFTER@LHC

Luminosities and quarkonium yields

Instantaneous luminosity (integrated over 10⁷ sec. for p or 10⁶ sec. for Pb)

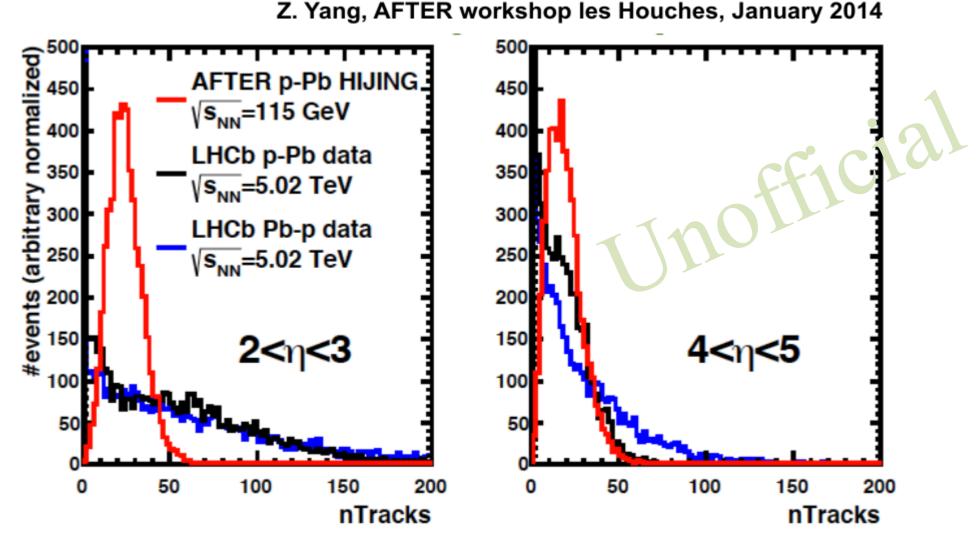
Extraction

 Φ extracted beam = 5 ×10⁸ p⁺ s⁻¹ (50% of the beam loss)

$\phi_{\text{beam}} \times (\rho \times l)$	$(\times N_A)/A$
---	------------------

Gas target ϕ Full beam = 2 ×10¹⁸ p⁺ s⁻¹

$$\phi_{\text{beam}} \times \left(\frac{\mathcal{N}_{\mathcal{A}}}{22400} \times \mathbf{P} \times \ell \right)$$


Beam	Flux	Target	$\sqrt{s_{\rm NN}}$	Thickness	ρ	A	L	$\int \mathcal{L}$	$\operatorname{Br}_{\ell\ell} \left. \frac{dN_{J/\psi}}{dy} \right _{y=0}$	$\operatorname{Br}_{\ell\ell} \left. \frac{dN_{\Upsilon}}{dy} \right _{y=0}$
	(s^{-1})		(GeV)	(cm)	$(g.cm^{-3})$		$(\mu b^{-1}.s^{-1})$	$(pb^{-1}.y^{-1})$	(y^{-1})	$(y^{-1})^{iy=0}$
р	5×10^{8}	Liquid H	115	100	0.068	1	2000	20000	4.0×10^{8}	8.0×10^{5}
р	5×10^{8}	Liquid D	115	100	0.16	2	2400	24000	9.6×10^{8}	1.9×10^{6}
р	5×10^{8}	Pb	115	1	11.35	207	16	160	6.7×10^{8}	1.3×10^{6}
Pb	2×10^{5}	Liquid H	72	100	0.068	1	0.8	0.8	3.4×10^{6}	6.9×10^{3}
Pb	2×10^{5}	Liquid D	72	100	0.16	2	1	1	8.0×10^{6}	1.6×10^{4}
Pb	2×10^5	Pb	72	1	11.35	207	0.007	0.007	5.7×10^{6}	1.1×10^{4}
Beam	Flux	Target	$\sqrt{s_{ m NN}}$	Usable gas zone	Pressure	A	L	$\int \mathcal{L}$	$\operatorname{Br}_{\ell\ell} \left. \frac{dN_{\mathrm{J}/\psi}}{dy} \right _{y=0}$	$\operatorname{Br}_{\ell\ell} \left. \frac{dN_{\Upsilon}}{dy} \right _{y=0}$
	(s^{-1})		(GeV)	(cm)	(Bar)		$(\mu b^{-1}.s^{-1})$	$(pb^{-1}.y^{-1})$	(y^{-1})	$(y^{-1})^{-5}$
р	3×10^{18}	perfect gas	115	100	10 ⁻⁹	Α	10	100	$2 \times 10^6 \times A$	$4 \times 10^3 \times A$
Pb	5×10^{14}	perfect gas	72	100	10^{-9}	Α	0.001	0.001	$4.25 \times 10^3 \times A$	$8.6 \times A$

Large luminosities comparable to LHC - with 1 m long $H_2(D_z)$ target \rightarrow 3 orders of magnitude larger than at RHIC

Gas Target needs pressure of 2 x 10⁻⁷ bar to compete with the extraction

Fast simulations

7 TeV proton beam on a Pb target $\int s_{NN} = 115 \text{ GeV}$

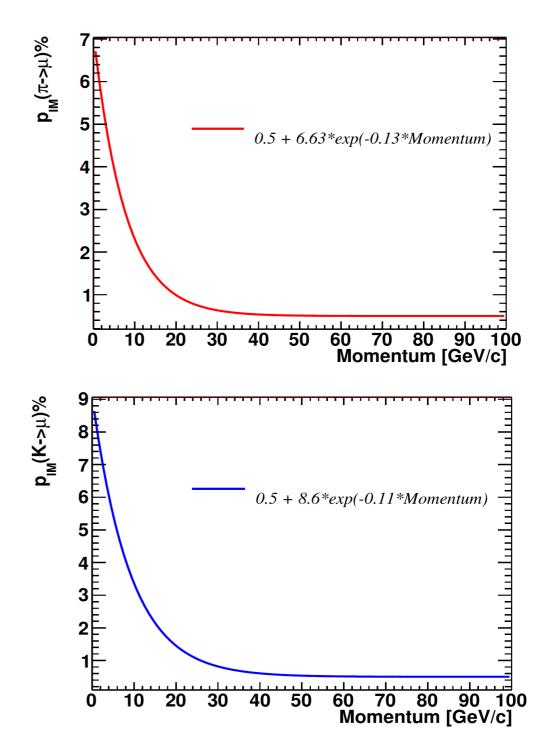
- Probability of high track multiplicity is lower in the fixed target mode than in the collider mode, at LHCb acceptance $2 < \eta < 5$
- Boost should not be an issue no problem for LHCb-like detector to cope with seen multiplicity

Quarkonium fast simulations, pp at $\int s = 115$ GeV

PYTHIA 8.185 Fast simulations with LHCb reconstruction parameters

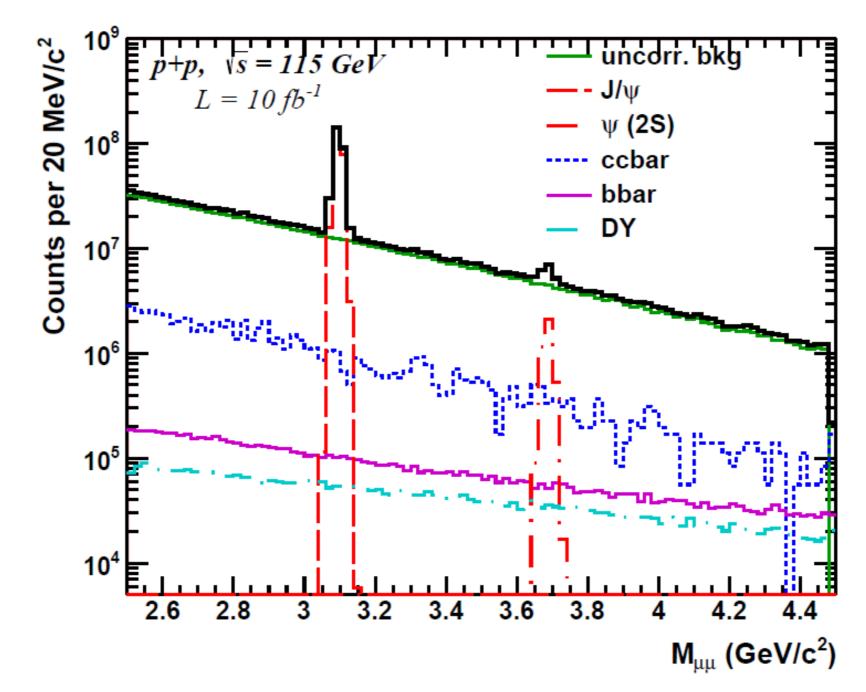
<u>Requirements:</u>

Momentum resolution: $\Delta p/p = 0.5\%$


µ identification efficiency: 98%

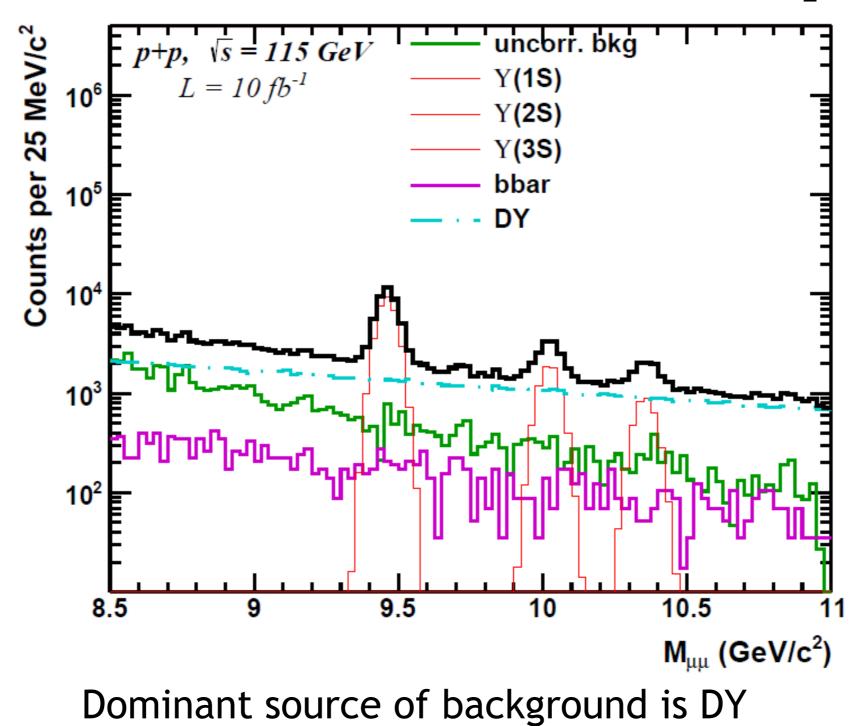
Single µ cuts:

 $2 < \eta_{\mu} < 5$ $p_{T}^{\mu} > 0.7 \text{ GeV/c}$

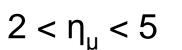

μ misidentification:
 π/K decays before 12m, rejected

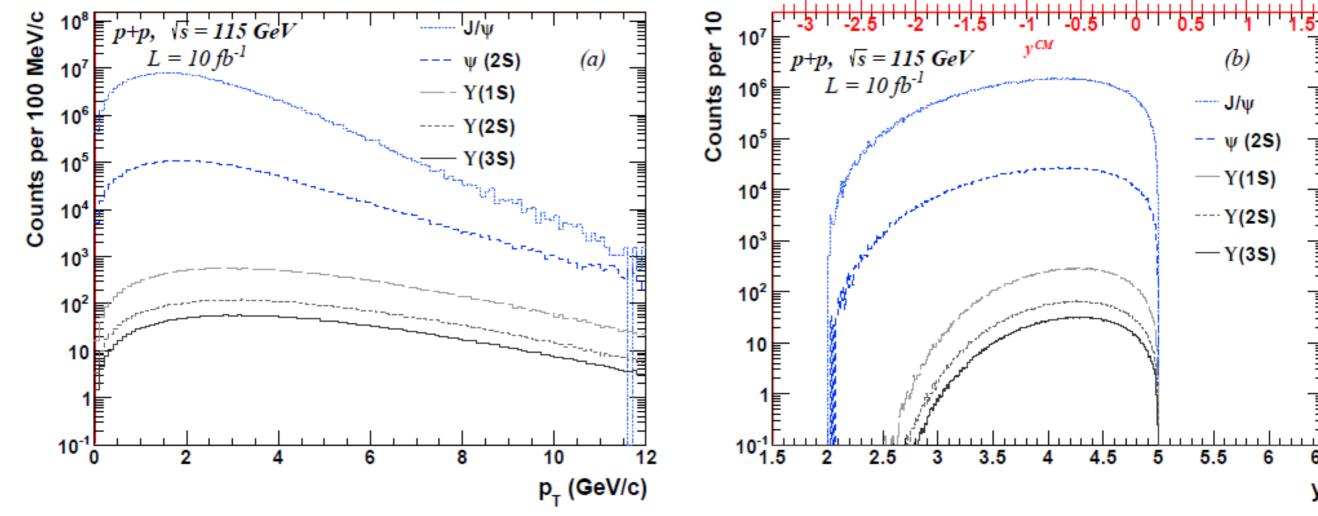
 π/K decays before 12m, rejected π/K decays after 12m, probability is applied

ψ signal simulation with full background $J/\psi \,/\,\psi(2S) \to \mu^+\,\mu^-$


 $\int L = 10 \text{ fb}^{-1}$, **0.5 year of data taking with 1m H₂ target**

Dominant source of background is uncorrelated background


Υ signal simulation with full background $\Upsilon(nS) \to \mu^+ \ \mu^-$



Quarkonium acceptance and p_T reach

$L = 10 \text{ fb}^{-1}$, 0.5 year of data taking with 1m H₂ target

- $J/\psi p_T \sim 15 \text{ GeV/c}$ with 1 year data
- x_T ~ 0.25
- Equivalent p_T reach to RHIC@500 GeV
- Same p_T reach expected for pA

- -2.8<y^{CM}< 0.2 for J/ψ
 Limited only by cuts on μ
- Even wider rapidity range with larger acceptance detector

Outlook

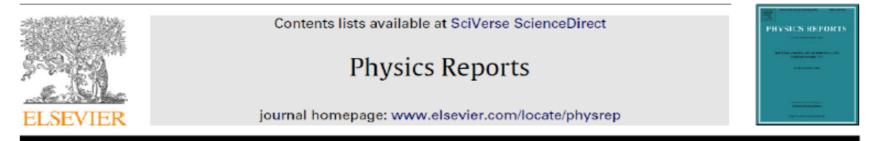
- Special issue in Advances in High Energy Physics on AFTER
- 12-15 papers to be published (including Franco-Chinese works)
- Expression of interest to the LHCC expected in Fall 2015:
 2 AFTER workshops in 2015 to prepare (in Warsaw (June) and Black Forest (September))
- Application Xu Guangqi IPN-THU

Website: <u>after.in2p3.fr</u>

- submission deadline April 17, 2015
- (6 editors e.g. J.P. Lansberg, C. Hadjidakis, J.He)

Summary

- Many physics opportunities with a fixed target experiment using LHC p and Pb beams
- Novel testing ground for QCD in the high-x frontier with AFTER@LHC
- Extensive spin program with a polarized target
- Using dense targets high luminosities can be achieved
- Target versatility: hydrogen, deuteron, nucleus


 nuclear effects and QGP
- First fast simulations performed

Physics Highlights: AFTER @ LHC

✓ Physics Reports 522 (2013) 239

Physics Reports 522 (2013) 239-255

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

^a SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

1.	Intro	luction	Deco	Deconfinement in heavy-		
2.		umbers and features	6.1.	Quarkonium stud		
3.		on partonic structure	6.2.	Jet quenching		
	3.1.	Drell-Yan	6.3.	Direct photon		
	3.2.	Gluons in the proton at large x	6.4.	Deconfinement ar		
		3.2.1. Quarkonia	6.5.	Nuclear-matter ba		
		3.2.2. Jets	W an	d Z boson productio		
			7.1.	First measuremen		
		3.2.3. Direct/isolated photons	7.2.	W/Z production i		
	3.3.	Gluons in the deuteron and in the neutron	Exclu	Exclusive, semi-exclusive		
	3.4.	Charm and bottom in the proton	8.1.	Ultra-peripheral o		
		3.4.1. Open-charm production	8.2.	Hard diffractive re		
		3.4.2. $J/\psi + D$ meson production	8.3.	Heavy-hadron (di		
		3.4.3. Heavy-quark plus photon production	8.4.	Very backward ph		
4.		hysics	8.5.	Direct hadron pro		
	4.1.	Transverse SSA and DY	Furth	Further potentialities of a		
	4.2.	Quarkonium and heavy-quark transverse SSA	9.1.	D and B physics		
	4.3.	Transverse SSA and photon	9.2.	Secondary beams		
	4.4.	Spin asymmetries with a final state polarization	9.3.	Forward studies in		
5.	Nucle	ar matter	Conc	lusions		
	5.1.	Quark nPDF: Drell-Yan in pA and Pbp		Acknowledgments		
	5.2.	Gluon nPDF		References		
		5.2.1. Isolated photons and photon-jet correlations				
		5.2.2. Precision quarkonium and heavy-flavour studies				
	5.3.	Color filtering, energy loss, Sudakov suppression and hadron break-up	in the r	nucleus		

ion collisions ies nd the target rest frame..... aseline..... on in pp, pd and pA collisions...... nts in pA..... in pp and pd e and backward reactions collisions eactions..... iffractive) production at $x_F \rightarrow -1$. hysics..... duction..... a high-energy fixed-target set-up.. n relation with cosmic shower

.....