PMT Selection for 1km² scintillator array of LHAASO

Zhang Zhongquan Shandong University On behalf of LHAASO collaboration 2015.4.9 FCPPL2015, Hefei

Outline

- 1. Introduction to LHAASO_KM2A
- 2. PMT Test Bench in SDU
- 3. Requirements and test for PMT
 - 3.1 PMT Gain

3.2 Uniformity and CTTD3.3 Optimizing of PMT dynamic range3.4 Dark noise rate3.5 Improvement of TTS

4. Conclusion

LHAASO-KM2A

- As a main component of LHAASO, the 1km² array (KM2A) has several physics goals:
 - > Origin of cosmic rays ;
 - UHE gamma sky survey ;
 - Energy spectrum measurement ;

- Performance of the KM2A:
 - 5635 eletromagnetic particle detectors (ED) and1221 muon detector (MD)
 - Energy range: 10TeV~100PeV
 - Sensitivity: 1%Icrab@50TeV

Eletromagnetic particle detectors (ED) specifications

- **ED** is designed to measure the **density** and **arrival times** of the particles in the EAS.
- ED consists of plastic scintillator, Pb with thickness of 5mm, 128 wavelength shifting fibers, voltage supply, electron system and one PMT.

Item	Value
Detection efficiency (> 5 MeV)	> 95%
Dynamic range	1 – 10000particles/m ² (20~200 000p.e. for PMT output)
Count Rate	<2kHz
Time resolution	< 2 ns

KM2A Prototype at YBJ

- 2014.8.10-2014.10.16, the prototype of KM2A with 39 EDs has been built up at Tibet, Yangbajing (4300 m a.s.l).
- PMT of XP2012B produced by PHOTONIS is used in ED and measured by the PMT test bench in SDU.

PMT Test Bench in SDU

6

PMT Test Bench in SDU

High Voltage Supply

- 2. Scanning of PMT cathode.
- 3. Easy to operate.

Gain for PMT

PMT gain set at 4*10^5.

- Good signal to noise ratio with threshold of 1mV
- Good dynamic range
- Weak affect of time walking

- 1. Absolute Gain: testing single photoelectron spectrum(SPE)
- 2. High Voltage Response Curve: anode charge under different high voltage with constant LED light.
- 3. Calculate working voltage with formula $G = A * V^{\beta}$. With an error of $\pm 1.25\%$ of working voltage for $4*10^{5}$.

Gain for PMT

PMT gain set at 4*10^5.

- Good signal to noise ratio with threshold of 1mV
- Good dynamic range
- Weak affect of time walking

- 1. Absolute Gain: testing single photoelectron spectrum(SPE)
- 2. High Voltage Response Curve: anode charge under different high voltage with constant LED light.
- 3. Calculate working voltage with formula $G = A * V^{\beta}$. With an error of $\pm 1.25\%$ of working voltage for $4*10^{5}$.

Uniformity and CTTD

- ED has 128 fibers coupling with PMT cathode in the area with radius of 8mm.
- Uniformity: uniformity in different place of ED
- Cathode transit time difference(CTTD): time resolution for ED.

- Wide dynamic range (1-10000 particles/m²) -> PMT keep linearity(better than -5%) until 1160mA
- Generally, the linear-focus PMT (10 dynodes) has a anode linearity current below 100 mA,
- dual-output with anode and dynode (DY6).

Point:

- 1. Good signal shape
- 2. Overlap between anode and dynode:100~200particles

- Wide dynamic range (1-10000 particles/m²) -> PMT keep linearity(better than -5%) until 1160mA
- Generally, the linear-focus PMT (10 dynodes) has a anode linearity current below 100 mA,
- * dual-output with anode and dynode (DY6).

- Wide dynamic range (1-10000 particles/m²) -> PMT keep linearity(better than -5%) until 1160mA
- Generally, the linear-focus PMT (10 dynodes) has a anode linearity current below 100 mA,
- * dual-output with anode and dynode (DY6).

- Wide dynamic range (1-10000 particles/m²) -> PMT keep linearity(better than -5%) until 1160mA
- Generally, the linear-focus PMT (10 dynodes) has a anode linearity current below 100 mA,
- dual-output with anode and dynode (DY6).

Linearity

Blue: Linearity of Anode Red: Linearity of Dynode. Multiplied by *p* to get the equivalent anode output.

Equivalent anode maximum linear current for 37 XP2012B PMT.

Dual-output with Anode and dynode can realize the wide dynamic range of ED.

Ratio between Anode output charge and Dynode, recorded as p.

Dark Noise Rate

Dark noise rate lower than 200Hz.

- 1. Signal multiplied by 10 times before enter the LTD with a threshold of 10mV.
- 2. Waiting for 3h before test.

All the 43 XP2012B PMT reach the limit for dark noise rate.

TTS

Transit time spread(TTS) affect
ED's time resolution directly

- Working gain: 5*10^6
- Light source :Laser(70ps)
- CFD, weak effect from time walking

TTS

•

Results for 27 XP2012B PMTs. TTS of XP2012B is 5.6ns on average.

- Working gain: 5*10^6 •
- Light source :Laser(70ps)
- CFD, weak effect from time walking •

TTS

Transit time spread(TTS) affect
ED's time resolution directly

Most ED failed to reach the limit of time resolution lower than 2ns. Urgent job to improve TTS of PMT.

- Working gain: 5*10^6
- Light source :Laser(70ps)
- CFD, weak effect from time walking

Improvement for TTS

PMT with plano-concave window has a better TTS.

XP2012B Flat window. TTS:5.6ns

CR285 Plano-concave window. TTS:2.2ns

Improvement for TTS

PMT with plano-concave window has a better TTS.

PMT_No	Npe	Time Resolution(ns)
XP2012B_106741	18.9	2.05 Improvement
CR285_CF4518	19.2	1.87 for time resolution of FD
CR285_CF4520	19.9	1.82
XP2012B Flat window.	C	R285 Plano-concave

TTS:5.6ns

CR285 Plano-concave window. TTS:2.2ns

Conclusion

- PMT test bench in SDU fulfill the requirement for KM2A PMT test.
- 2. Dual-readout with anode and dynode can realize the wide dynamic range of ED.

3. PMT with plano-concave window has a better TTS ,which will improve time resolution of ED.

THANK YOU

- Dual-length method:
- 1. Test the out put charge and amplitude with OSC both in far distance and near distance under same LED driven level.
- 2. Increasing LED light intensity slowly and repeat the testing same as step 1.
- 3. Ratio between the output charge in two distance is constant under different LED light intensity, when PMT working in linear range.
- 4. When the ratio changed, PMT stepping into nonlinear range.

 $Non-Linearity = \Big(\frac{(Anode\ Output\ Charge)_{near}}{(Anode\ Output\ Charge)_{far}} - \lambda\Big)/\lambda$

LED with teflon to make the light more uniform when reaching cathode.

Properties of Candidate PMTs

PMT type	XP2012B	XP2072	CR285	XP3060
Uniformity(%)	4.4	13.5	2.4	3.8
CTTD(ns)	0.48	0.65	0.17	0.14
TTS(ns)	5.64	4.95	2.20	1.11
Linearity of anode(mA)	50	85	46	42
Dark noise rate(Hz)	5.1	5.8	2.3	10.8

- 1. XP2012B and XP2072 with a flat window has a bad TTS compare with CR285 and XP3060 with plano-concave window.
- 2. Other properties of CR285 and XP3060 is no worse than XP2012B.

Using PMT with plano-concave window is a easy way to improve TTS for PMT.