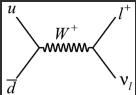
Measurement of W-boson production in p-Pb collisions with ALICE at the LHC

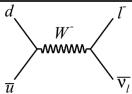
Jianhui Zhu
for the ALICE Collaboration

8th France China Particle Physics Laboratory (FCPPL) workshop April 8-10, 2015, Hefei, China

Institute of Particle Physics, CCNU, Wuhan, China École des Mines de Nantes, Nantes, France Subatech, CNRS/IN2P3, Nantes, France

Outline


- Physics motivation
- Data sample
- Analysis strategy
- Results:
 - cross section vs. rapidity
 - ✓ yield/<N_{coll}> vs. event activity
- Conclusion



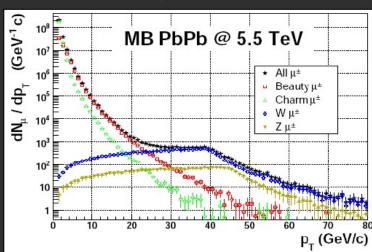
Physics motivation

Why?

- □ Electroweak (EW) bosons are produced in initial hard partonic scattering processes
- ☐ In p-p collisions:
 - ✓ W boson production is sensitive to Parton Distribution Functions (PDFs)
 - precise theoretical predictions
 - cross-check for luminosity and alignment effects
- ☐ In p-Pb collisions:
 - ✓ investigate the cold nuclear matter effects
 - modification of PDFs in nuclei
- ☐ In Pb-Pb collisions:
 - test binary scaling
 - reference for medium-induced effects
- How?
 - Dominant production processes (LO)

Detected through their muonic decay:

$$W^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \, \nu_{\scriptscriptstyle \mu} \quad W^{\scriptscriptstyle -} \to \mu^{\scriptscriptstyle -} \, \bar{\nu}_{\scriptscriptstyle \mu}$$

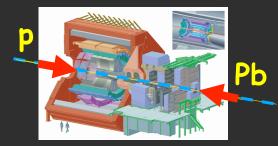

 μ^{\pm} Ψ^{\pm} production is maximum at ~ 40 GeV/c and dominates the high p_{T} range

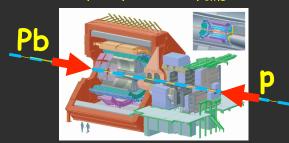
[Z. Conesa del Valle et al., ALICE-INT-2006-021 & Eur. Phys. J. C49 (2007) 149]

Where ?

In the ALICE Muon Spectrometer, covering a rapidity range complementary to those of ATLAS and CMS

statistics: 1 month (L = 5.10^{26} cm⁻² s⁻¹, t = 10^6 s)




Data sample

p-Pb collisions :

- Beam energy: $\int s_{NN} = 5.02 \text{ TeV}$
 - Energy asymmetry of the LHC beams ($E_p = 4 \text{ TeV}$, $E_{Pb} = 1.58 \text{ A} \cdot \text{TeV}$)
 - \rightarrow rapidity shift $\Delta y = 0.465$ in the proton direction
- Beam configurations:
 - Data collected with two beam configurations: p-Pb and Pb-p in the range 2.5 < y_{lab} < 4
 - \rightarrow forward rapidity (2.03 < y_{CMS} < 3.53)

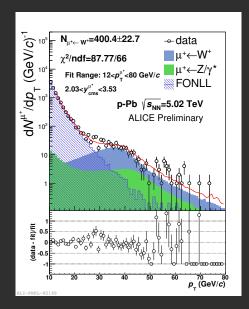
backward rapidity (-4.46 $< y_{CMS} < -2.96$)

- Trigger: high p_T muon triggered events = MB events (coincidence of VOA & VOC) with a muon of $p_T \sim 4.2$ GeV/c in the spectrometer
- Statistics:

	Integrated luminosity
forward	4.9 × 10³ ub ⁻¹
backward	$5.8 \times 10^{3} \text{ ub}^{-1}$

Muon track selection :

- acceptance and geometrical cuts
- muon trigger matching: reject punch-through hadrons
- pxDCA cut: correlation between momentum and distance of closest approach (DCA) to the interaction vertex to remove beam-gas collisions and fake tracks



Analysis strategy

- ightharpoonup W[±] decay muons are the main contributors in single muon momentum distribution at high p_{T} (p_{T} > 30 GeV/c)
- ightharpoonup Heavy-flavor (b+c) decay muons are the dominant background at low p_{T} (8 < p_{T} < 40 GeV/c)
- ♦ For p_T > 50 GeV/c, Z^0/γ^* is the main source of background
- ❖ Extract W± signal from a fit of the transverse momentum distribution of single muons with

$$f(p_T) = N_{bkg} \cdot f_{bkg}(p_T) + N_{\mu \leftarrow W} \cdot f_{\mu \leftarrow W}(p_T) + N_{\mu \leftarrow Z/\gamma^*} \cdot f_{\mu \leftarrow Z/\gamma^*}(p_T)$$

- f_{bkg}(p_T): phenomenological functions or FONLL-based MC template
- $f_{\mu \leftarrow W}(p_T)$, $f_{\mu \leftarrow Z/\gamma^*}(p_T)$: Monte-Carlo templates
- N_{bkg}, N_{u←W}: free parameters
- $N_{\mu \leftarrow Z/v}$: fixed to $N_{\mu \leftarrow W}$

- Correct the extracted signal by Acceptance x Efficiency (Acc. x Eff)
- Normalize the corrected yield ($\mu^{\pm} \leftarrow W^{\pm}$) to the Minimum Bias cross-section

W^{\pm} and Z^{0}/γ^{*} MC templates

Simulation configuration:

- \square W[±] and Z⁰/ γ ^{*} generated with POWHEG in p-p & p-n collisions at 5.02 TeV
- \square W[±] and Z⁰/ γ * forced to decay into muonic channels

Generators:

■ POWHEG:

[JHEP 0807(2008)060]

- is interfaced with PYTHIA6.4 to apply showering, CTEQ6m PDF and no shadowing
- PYTHIA6.4 : (is used only for systematics, including effects of shadowing)
 [JHEP 05(2006)026]
 - shadowing: p or n considered in a Pb nucleus, parameterized with EPS09 [JHEP 0904(2009)065]
 - PDF set : CTEQ61

Combine p-p & p-n to obtain p-Pb:

 \triangle A = 208, Z = 82

$$\frac{1}{N_{pPb}} \cdot \frac{dN_{pPb}}{dp_T} = \frac{Z}{A} \cdot \frac{1}{N_{pp}} \cdot \frac{dN_{pp}}{dp_T} + \frac{A - Z}{A} \cdot \frac{1}{N_{pn}} \cdot \frac{dN_{pn}}{dp_T}$$

HF background: phenomenological functions

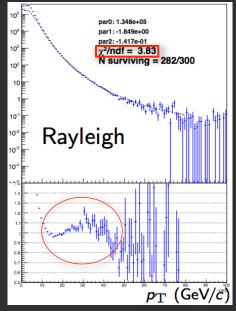
- The background mainly consists of muons from heavy-flavor decays
- \diamond Small shadowing effects expected at high p_{T} : use FONLL p_{T} shapes in the generation of D and B mesons
- Phenomenological functions used by CMS, ATLAS and LHCb collaboration for similar measurements at the LHC

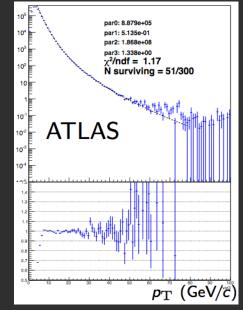
Rayleigh:

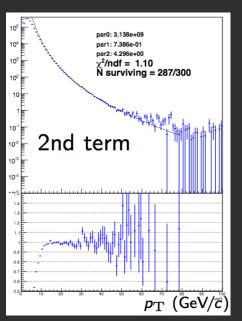
$$f(p_T) = C \cdot p_T \cdot \exp\left(-\frac{p_T^2}{2(A+B \cdot p_T)^2}\right)$$

[Phys. Lett. B 715 (2012) 66]

ATLAS:

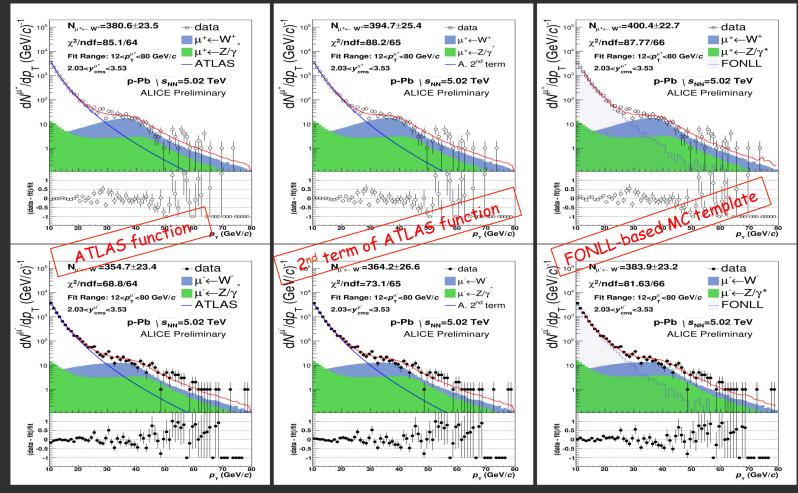

$$f(p_T) = A \cdot e^{-B \cdot p_T} + C \cdot \frac{e^{D \cdot \sqrt{p_T}}}{p_T^{2.5}}$$


[ATLAS-CONF-2011-078]


ATLAS 2nd term:

$$f(p_T) = C \cdot \frac{e^{D \cdot \sqrt{p_T}}}{p_T^E}$$

Test on FONLL-based MC template: reject Rayleigh



Example of W signal extraction (forward)

- ❖ The yield of μ^{\pm} ←W[±] is defined as the integral W template for p_{\top} > 10 GeV/c
- Fit range : 12 < p_T < 80 GeV/c</p>

Example of fit in forward rapidity:

FCPPL 2015 8 10/04/2015

Systematic on signal extraction

- lacktriangle Signal extraction: several fits performed on the muon $p_{ au}$ distribution (trials) by varying the fit configuration
 - lue heavy-flavor background description ightarrow change fit functions and p_{T} range of fit
 - \Box fraction of muons from Z^0/γ^* decays \rightarrow use difference between POWHEG and PYTHIA
 - □ alignment effects → vary the detector positions in simulations within uncertainties on alignment
- Shadowing effects: use PYTHIA (with EPS09) for W templates
- The yield of µ[±]←W[±] is defined as the weighted average of the trials:
 - the results of (3 background descriptions) x (1 MC templates for signal) x (different p_T ranges) x (2 values of $N_{u \in Z/v^*}/N_{u \in W}$) x (2 residual alignment files) are merged together to obtain the final value

$$\left\langle N_{W}\right\rangle = \frac{\sum_{i=1}^{n} w_{i} N_{\mu \leftarrow W, i}}{\sum_{i=1}^{n} w_{i}}$$

$$w_i = \frac{1}{\left(\frac{\sigma_{\mu \leftarrow W}}{\sqrt{N_{\mu \leftarrow W}}}\right)^2}$$

The statistical error is given by propagating the error on each trial:

$$\sigma_{\langle N\mu \leftarrow W \rangle}^{stat.} = \frac{\sqrt{\sum_{i=1}^{n} (w_i \sigma_{\mu \leftarrow W,i})^2}}{\sum_{i=1}^{n} w_i} \cdot \sqrt{n}$$

Assuming that the results from different trials come from a uniform distribution, one can finally estimate the systematic uncertainty as:

$$\sigma_{\langle N\mu\leftarrow W\rangle}^{syst.} = \frac{Max(N_{\mu\leftarrow W,i}) - Min(N_{\mu\leftarrow W,i})}{\sqrt{12}}$$

- The results should be corrected by Acc. x Eff.
- lacktriangle Acc. x Eff. is determined from the same simulations used to obtain the μ^{\pm} \leftarrow W^{\pm} templates

	forv	vard	backward		
	μ⁺	μ-	μ ⁺	μ-	
Acc. x Eff.	0.889	0.887	0.773	0.754	

Alignment effect:

Systematics due to alignment are estimated by varying the alignment in the simulations and found to be < 1%</p>

Tracking/trigger efficiency:

- Systematic uncertainties for muon tracks:
 - ullet Tracking: 2% Trigger: 1% (detector efficiency only at high $p_{ extsf{T}}$) Matching: 0.5%
- Propagation to the number of muons from W decays
- ❖ A conservative uncertainty of 2.5% is considered for all multiplicity bins

Normalization

- ♦ MSL: muon single low p_T trigger (p_T >~ 0.5 GeV/c), MSH: muon single high p_T trigger (p_T >~ 4.2 GeV/c)
- MSH events must be normalized to equivalent minimum bias to obtain the cross-section
- Normalization factors estimated with two methods:
 - Offline method which uses trigger inputs:

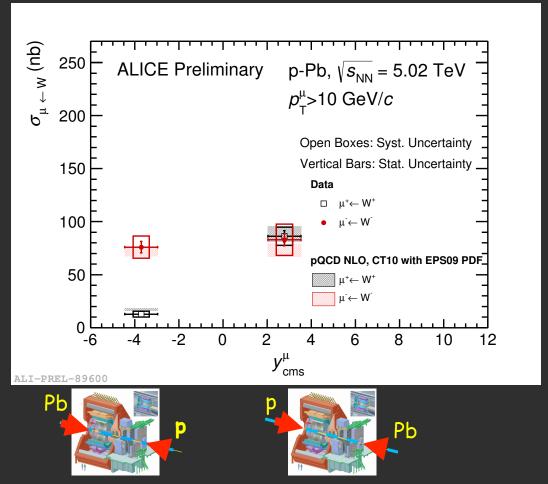
$$F_{norm}^{MSH} = \frac{N_{MB} \times F_{pile-up}}{N_{(MB\&\&0\,MSL)}} \times \frac{N_{MSL}}{N_{(MSL\&\&0\,MSH)}}$$

where $F_{pile-up}$ = $\mu/(1-e^{-\mu})$ and μ is the mean value of Poisson distribution

Trigger scalers which use Level 0 (L0b) trigger counters:

$$F_{norm}^{MSH} = \frac{L0b_{MB} \times purity_{MB} \times F_{pile-up}}{L0b_{MSH} \times PS_{MSH}}$$

 PS_{MSH} fraction of accepted high p_T triggered events which pass the physics selection

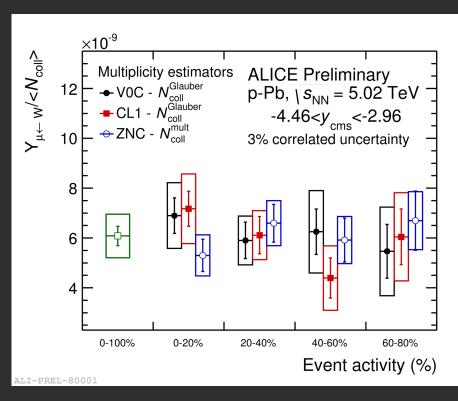

- The difference of the methods is used as systematic uncertainty (1%)
- MB cross sections :
 - p-Pb (forward): 2.09 ± 0.07 b
 - p-Pb (backward): 2.12 ± 0.06 b

$$\sigma_{\mu \leftarrow W} = \frac{N_{\mu \leftarrow W}}{Acc. \times Eff.} \times \frac{\sigma_{MB}}{N_{MSH} \times F_{norm}}$$

Results: cross section vs. rapidity

Cross section of muons from W decays with 2.03 $< y_{CMS} < 3.53$ (forward) and -4.46 $< y_{CMS} < -2.96$ (backward), $p_T^{\mu} > 10$ GeV/c at $\int s_{NN} = 5.02$ TeV in p-Pb collisions




- Cross sections of muons from W decays are consistent with predictions including nPDFs
- ✓ More W- than W+ at backward rapidity

Results: Yield/<N_{coll}> vs. event activity

- In order to increase statistics, µ⁺←W⁺ and µ⁻←W⁻ were added
- In case $\langle N_{coll} \rangle$ estimation is not biased, $Y/\langle N_{coll} \rangle$ is not expected to depend on event activity

forward backward

Behavior of different multiplicity estimators compatible within uncertainties

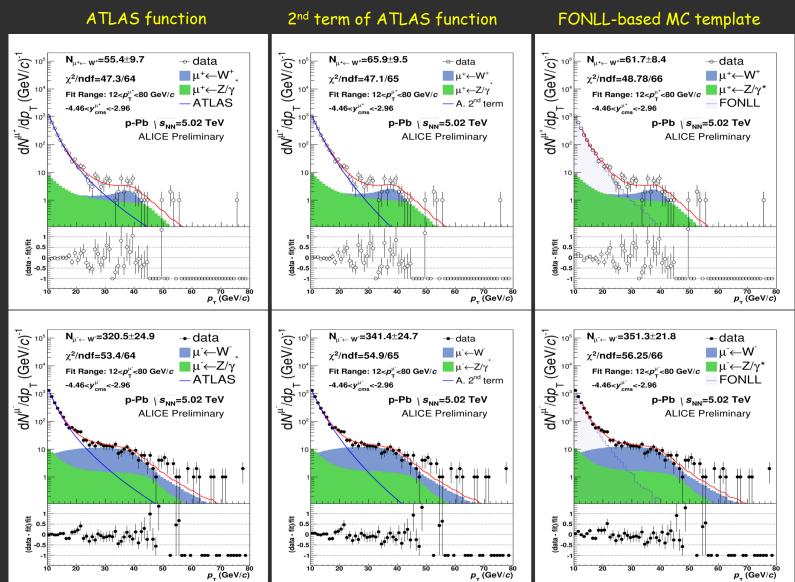
Conclusion

The production of muons from W decays was measured in p-Pb collisions at $\int s_{NN} = 5.02$ TeV in the ranges 2.03 < y^{μ}_{CMS} < 3.53 and -4.46 < y^{μ}_{CMS} < -2.96, p_{T}^{μ} > 10 GeV/c

Results:

- \checkmark cross section of muons with $p_T^{\mu} > 10$ GeV/c as a function of y_{CMS}
- yields/ $\langle N_{coll} \rangle$ using different multiplicity estimators to determine $\langle N_{coll} \rangle$: yield in different event activity bins found to scale with $\langle N_{coll} \rangle$ within (large) uncertainties
- Cross sections are compared with predictions including nPDFs:
 - agreement within uncertainties

Outlook:


- Improve the determination of the systematic errors
 - drop LO generator (PYTHIA), include EPS09 in NLO generator (POWHEG)
 - use different set of PDFs and other NLO generator to re-weight POWHEG production
 - better estimation of alignment effects
 - cross-check in p-p collisions

Backup

Example of combined fit (backward)

Yileds of muons from W decays normalized to binary number of collisions

	V	DA .	C	L1	V	OC .	Hybrid	d ZNA
Multiplicity	<n<sub>coll></n<sub>	syst.	<n<sub>coll≻</n<sub>	syst.	<n<sub>coll></n<sub>	syst.	<n<sub>coll></n<sub>	syst.
0-20%	12.8	11%	13.4	11%	12.85	11%	11.5	9.3%
20-40%	9.36	10%	9.51	10%	9.39	10%	9.57	8.1%
40-60%	6.42	9%	6.29	9%	6.40	9%	7.01	9.9%
60-80%	3.81	21%	3.52	21%	3.74	21%	4.33	12.7%
0-100%				<n<sub>coll> : 6.883</n<sub>	5 syst.:8%			

- ❖ In order to increase the statistics, the results for μ^+ ← W⁺ and μ^- ← W⁻ are summed together
- The systematic uncertainties on signal extraction are considered as uncorrelated and summed in quadrature
- The uncertainties on the normalization factor and tracking & trigger uncertainties and efficiency are fully correlated among μ⁺ and μ⁻ and also among the different multiplicity bins
- \diamond The uncertainties on Acc.xEff. are uncorrelated for μ^+ and μ^- , but correlated with multiplicity
- The uncertainties on pile-up and $\langle N_{coll} \rangle$ are correlated among μ^+ and μ^- , but uncorrelated in multiplicity

Summary of systematic uncertainties

- Systematic on the generator is based on: the NLO generator POWHEG and PYTHIA6.4 which is used to take into account systematics on nPDFs
- Other possible sources:
 - ✓ input PDFs
 - \checkmark The ratio of Z^0/γ^*
 - ✓ All of above are < 1%
- The summary of systematics considered is shown below:

Signal extraction (includes alignment, fit stability/shape, etc.)	from ~ 6% to ~ 24%
Acc.xEff. - track./trig. Efficiencies - alignment	2.5% 1%
Normalization to MB - F _{norm} - σ_{MB} Pile-up	1% 3.2% (forward) 3% (backward) from 0 to 7.5%
Normalization to <n<sub>coll></n<sub>	from 8% to 21% depending on bin