# ATLAS-CMS selected Higgs results and Run-II perspective

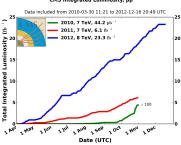
#### Camilo Carrillo

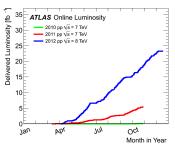
on behalf of the CMS and ATLAS collaborations

### 8<sup>th</sup> France China Particle Physics Laboratory (FCPPL) Workshop

Institute de physique Nuclear de Lyon (IPNL) 08/04/2015

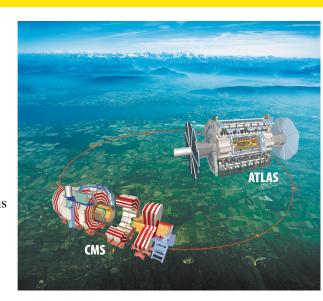
#### **Table of contents**


- 1 The accelerator and its experiments
  - LHC
  - ATLAS-CMS
- 2 Selected Higgs results (Run-I)
  - Standard Model
  - Beyond Standard Model
- 3 Higgs Perspectives for Run-II
- Backup


#### The Large Hadron Collider Run-I, pp collisions at $\sqrt{s}$ = 7 TeV and 8 TeV

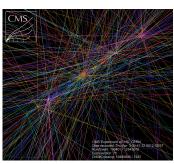


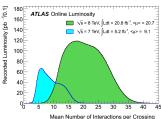
- LHC excellent performance in 2011 and 2012
- $\int L dt \approx 25 fb^{-1}$  at  $\sqrt{s} = 7$  and 8 TeV
- Peak Instant Luminosity:  $L = 7.7 \times 10^{-33} \text{ cm}^{-2} \text{s}^{-1}$
- World record in energy and instantaneous luminosity


#### CMS Integrated Luminosity, pp



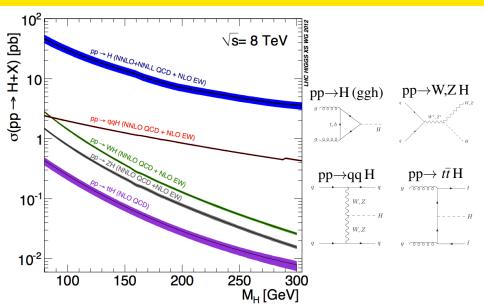



#### ATLAS-CMS

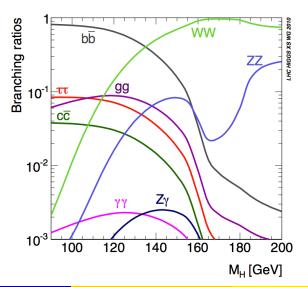

- Big collaborations
  (≈4000/experiment)
- Multi purpose experiments
- LHC data efficiency recording (used for analysis) > 90% during Run-I.
- Robust Muon systems and  $e\gamma$ -calorimeters (crystals(CMS) and liquid argon(ATLAS)).



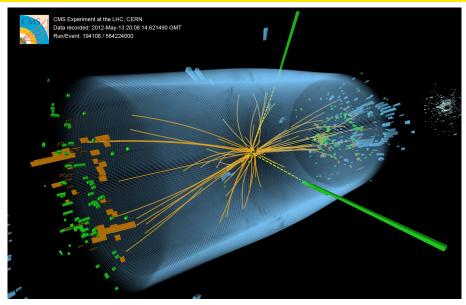
#### Multiple collisions per bunch crossing, a challenge for the experiments


- Due to the increase in luminosity, more than one collision happen during a bunch-crossing in the LHC, this is called pile up (PU).
- 2011 average PU  $\approx$  **10**, for 2012 average PU  $\approx$  **20**.
- Particle flow algorithm helps a lot in high PU events.
- ullet Less energy resolution for e and  $\gamma$
- Central jet veto and VBF jet tagging affected.
- For LHC Run-II at  $\sqrt{s} = 13 \, TeV$  are expected PU  $\approx 40$
- Experiments request to LHC PU<50.

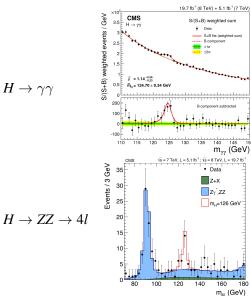


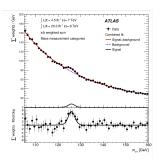


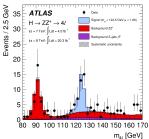

### Selected Higgs results (Run-I) Standard Model


#### **Higgs production modes**

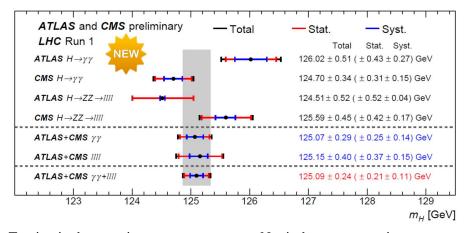



#### **Higgs Decays, branching ratios**





#### An event display, $m_{\gamma\gamma} = 125.9 \, GeV$




#### **Higgs Mass combination CMS-ATLAS,** $m_H = 125.09 \pm 0.24$ **GeV**



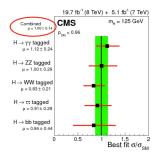


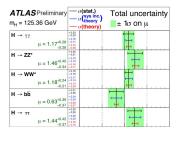


#### A detailed view for the mass measurements

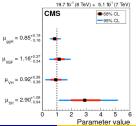


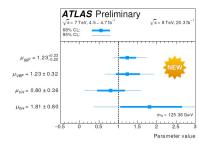
Tension in the experiments measurements. Not in-between experiments


#### **Analysis Overview**


|      | Η→γγ         | H→ZZ         | H→WW         | Η→ττ         | H→bb         | H→Zγ         | Н→μμ         |
|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| gg→H | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS |              | ATLAS<br>CMS | ATLAS<br>CMS |
| VBF  | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS |              | ATLAS<br>CMS | ATLAS<br>CMS |
| VH   | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | -<br>CMS     | ATLAS<br>CMS | ATLAS<br>CMS | -<br>CMS     |
| ttH  | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS |              |              |

comprehensive coverage of all Higgs/SM physics cases

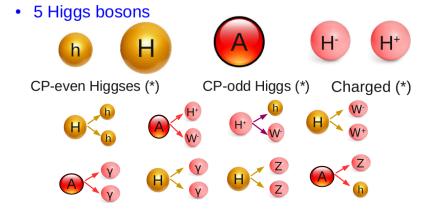

#### **Higgs Signal Strength**








# Signal Strength production






## Selected Higgs results (Run-I) Beyond Standard Model

#### Search for additional Higgs Beyond the Standard Model (2HDM)

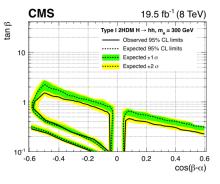
- The addition of doublet in the Higgs sector is one of the simplest possible extensions
- ullet 2HDMs and the MSSM are fully compatible with a SM-like Higgs boson with mass pprox 125~GeV

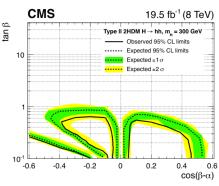


#### Search for additional Higgs Beyond the Standard Model

Direct Searches for additional Higgs Bosons:  $H \to hh, H/A \to \tau\tau, A \to Zh$  and low mass Higgs.

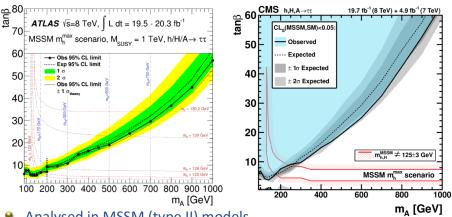
#### In 2HDM models:


- 5 Higgs Bosons:
  - h SM like Higgs Boson
  - H CP even
  - A CP odd
  - H± Charged
  - H Coupling scale factor: 2HDM/SM


- Free parameters:
  - 4 Higgs masses
  - tan β ratio of vevs
  - α mixing angle of h and H
- Yukawa couplings arranged in 4 different model 'types'
  - MSSM is based on a Type II
    - Alignment limit cos(β-α)=0 : h has SM couplings

|   |                | Type I                     | Type II                     | Lepton Specific          | Flipped                  |
|---|----------------|----------------------------|-----------------------------|--------------------------|--------------------------|
|   | K <sub>V</sub> | $sin(\beta-\alpha)$        | sin(β-α)                    | sin(β-α)                 | sin(β-α)                 |
| ı | K <sub>u</sub> | $\cos(\alpha)/\sin(\beta)$ | $\cos(\alpha)/\sin(\beta)$  | $cos(\alpha)/sin(\beta)$ | $cos(\alpha)/sin(\beta)$ |
| ı | K <sub>d</sub> | $\cos(\alpha)/\sin(\beta)$ | $-\sin(\alpha)/\cos(\beta)$ | $cos(\alpha)/sin(\beta)$ | -sin(α)/cos(β            |
|   | K,             | $cos(\alpha)/sin(\beta)$   | -sin(α)/cos(β)              | -sin(α)/cos(β)           | $cos(\alpha)/sin(\beta)$ |

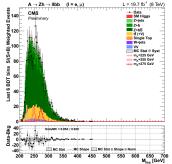
### $H \rightarrow hh$


Look at multi-lepton (h→WW,ZZ,ττ)+h→γγ final states

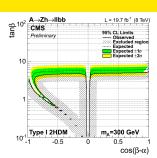


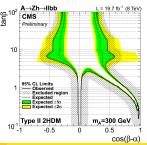


- Best direct limit on H at low tan β and low mass
- High tan β covered by H→ττ
- Searches with decays h→bb also being persued (ATLAS+CMS)


### $H/A \rightarrow \tau \tau$



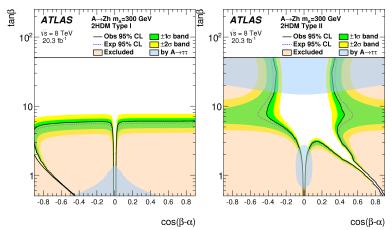

- Analysed in MSSM (type II) models
- Best exclusion at high tan  $\beta$  up to large masses


### $A \rightarrow Zh$ (CMS)

- Analyzed with decays:  $h \rightarrow bb, h \rightarrow ZZ$  and  $h \rightarrow WW$
- Very good mass resolution
- Best limits at  $m_A < 2m_{top}$  and low tan  $\beta$

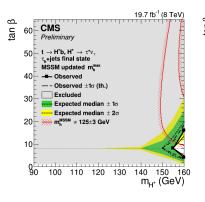


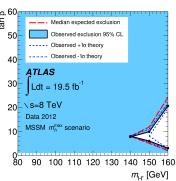
Example  $h \rightarrow bb$ 



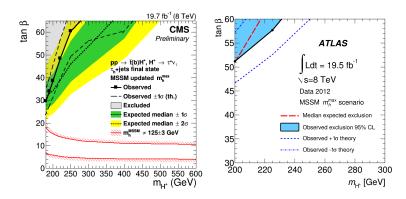



### $A \rightarrow Zh$ (ATLAS)


#### Zh analyzed in:


- $Z \rightarrow (ee, \mu\mu)$  and  $h \rightarrow \tau\tau$  /  $Z \rightarrow (ee, \mu\mu, \nu\nu)$  and  $h \rightarrow bb$
- All  $\tau$  decays considered for both decays




# $H^{\pm}$ : $(m_{H^{+}} < m_{top})$

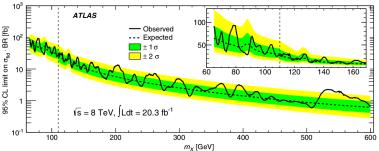
- Production:  $gg \rightarrow tbH^{\pm}$ ,  $gb \rightarrow tH^{\pm}$ ,  $gg \rightarrow tt \rightarrow WbH^{\pm}b$ :  $(m_{H^{\pm}} < m_t)$
- Decays:  $H^{\pm} \rightarrow \tau^{\pm} \nu$  (ATLAS/CMS) and  $H^{\pm} \rightarrow cs / H^{\pm} \rightarrow tb$  (CMS)
- All  $\tau$  decays considered for both decays





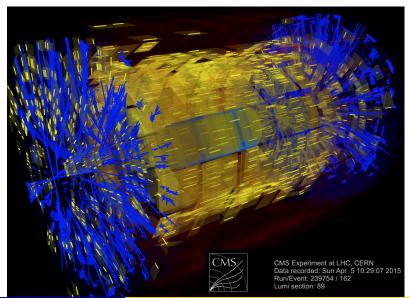
# $H^{\pm}$ : $(m_{H^{\pm}} > m_{top})$



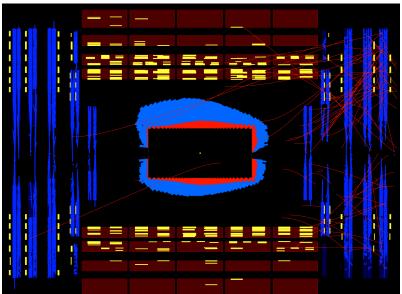

- Search in tH<sup>±</sup> or btH<sup>±</sup> mode
- Little phase space covered so far: Lots of room for discovers during LHC-Run-II

#### Low mass Higgs in $\gamma\gamma$ resonances

#### Additional Higgs at a lower mass (down to $m_H$ =60 GeV)


- Few words about this search in this presentation.
- Presentation about Run-I  $\approx$  Fan Jiawei (IPNL/IHEP) today.
- For Run-II, a High Level Trigger selections are being implemented in CMS to extend our search during run-II.

#### ATLAS results:




# **Higgs Perspectives for Run-II**

#### LHC Run-II is imminent, last Sunday (source BBC)



#### LHC Run-II is imminent, LHC is back, last Sunday



#### Expected Integrated luminosity for run-II 2015 $\approx$ 10 fb<sup>-1</sup>

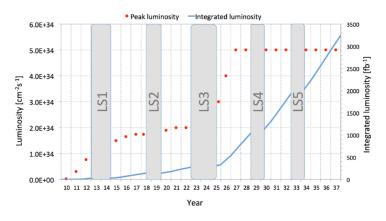
- Conservative  $\beta^*$  to start
- Conservative bunch population
- Assuming same machine availability as 2012

|        | Nc   | Beta<br>* | ppb    |     |        | Days<br>(approx) | Int lumi            | Pileup |
|--------|------|-----------|--------|-----|--------|------------------|---------------------|--------|
| 50 ns  | 1300 | 80        | 1.2e11 | 2.5 | 4.8e33 | 21               | ~1 fb <sup>-1</sup> | 25     |
| 2015.1 | 2592 | 80        | 1.1e11 | 2.5 | 7.6e33 | 30               | 3 fb <sup>-1</sup>  | 21     |
| 2015.2 | 2592 | 40        | 1.1e11 | 2.5 | 1.2e34 | 48               | 8 fb <sup>-1</sup>  | 34     |

| 2015                    | 2016                    | 2017                    | 2018                    |
|-------------------------|-------------------------|-------------------------|-------------------------|
| J F M A M J J A S O N D | J F M A M J J A S O N C | J F M A M J J A S O N D | J F M A M J J A S O N D |
|                         |                         | EYETS                   | LS2                     |

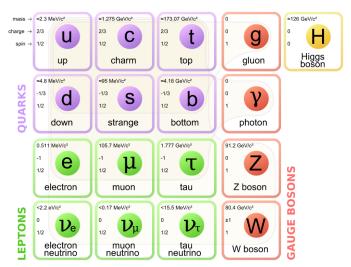
Shutdown/Technical stop Protons physics Commissioning Ions

#### A little bit further into the future




- This could be the window to new physics.
- Reducing  $\frac{\Delta\mu}{\mu}$  could show as a deviations from the SM

#### Run-II year by year ( $\approx 100 fb^{-1}$ )


|      | Peak lumi<br>E34 cm <sup>-2</sup> s <sup>-1</sup> | Days proton physics | Approx. int<br>lumi [fb <sup>-1</sup> ] |
|------|---------------------------------------------------|---------------------|-----------------------------------------|
| 2015 | 1.3                                               | 100                 | 10                                      |
| 2016 | 1.5                                               | 160                 | 35                                      |
| 2017 | 1.7                                               | 160                 | 45                                      |
| 2018 | 1.7                                               | 40                  | 10                                      |

#### Perspective for the LHC during the next 10 years



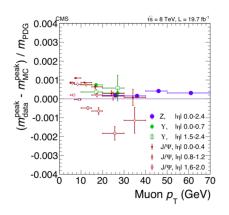
- Run-I center of mass energy is just  $\approx \frac{1}{2}$  of the designed for the LHC
- Run-I is a small portion of the expected integrated luminosity for the life-time of the LHC.
- Nevertheless we have a discovery!

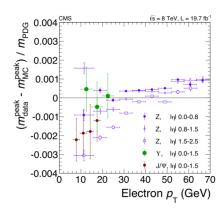
#### **Conclusions**



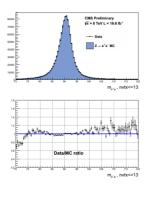
The Standard Model "free-parameters" are now known!

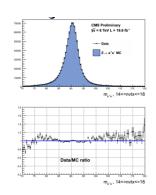
#### **Conclusions**

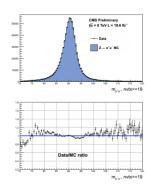

- Combined ATLAS+CMS measurement of the Higgs boson mass:  $m_H = 125.09 \pm 0.24$ GeV
- Combinations of Run 1 measurements in each experiment have been done for a majority of results
- Combination of ATLAS+CMS Higgs coupling strength in preparation
- Extensive search for deviations from the SM prediction in:
  - Higgs production kinematics
  - WW and ZZ Higgs decay kinematics
  - Signal strength in all categories of all observable final states and Higgs coupling strength
- Extensive BSM searches have been made in ATLAS and CMS
- Searches for CP even(H),odd(A) and charged H<sup>±</sup> Higgs in a variety of decay modes
- All results show consistency within errors with the Standard Model Hypothesis
- Looking forward for Run-II


#### **Backup**

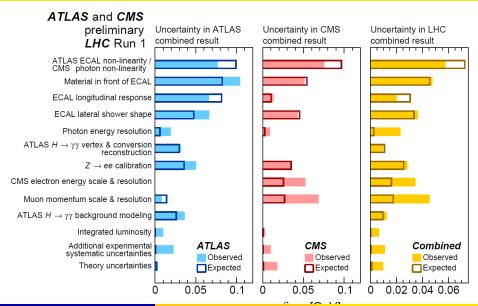
### **BACKUP**



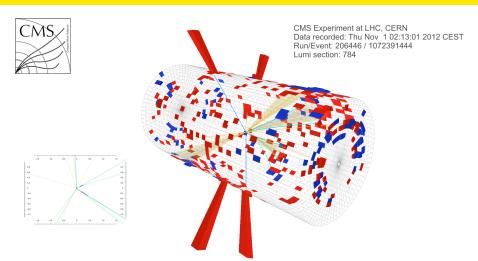


#### Lepton momentum scale



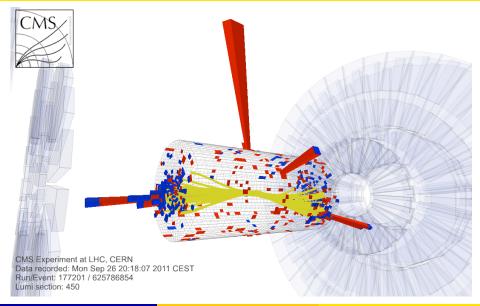




#### e $\gamma$ energy reconstruction stability









#### systematics $\gamma\gamma$



#### event display tth



#### event display vbf

