

Cross Section Measurements of the Standard Model Multiboson (WW->lvlv && WWW->lllvvv)

Cristinel Diaconu^a, Jun Gao^{a,b}, Yanwen Liu^b, Emmanuel Monnier^a, Ruiqi Zhang^{a,b}

^aCentre de Physique des Particules de Marseille ^bUniversity of Science and Technology of China

8th FCPPL workshop in Hefei , April 2015

History of Collabration

WW->lvlv 7 TeV
 Shu Li's PhD thesis. Defense at 07/2012
 Supervisors: Yanwen Liu, Emmanuel Monnier ,Zhengguo Zhao

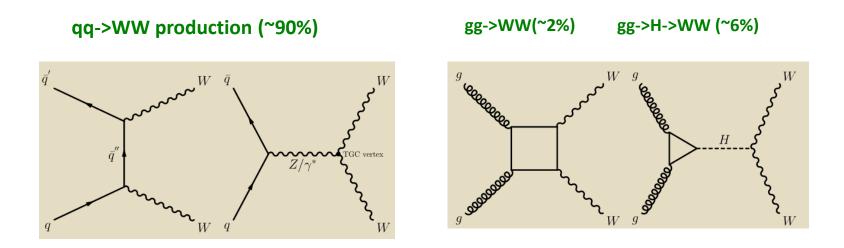
Paper: Phys. Rev. D 87, 112001 (2013)

- WW->lvlv 8 TeV
 To be Jun Gao's PhD thesis.
 Supervisors: Emmanuel Monnier ,Yanwen Liu
- 3. WWW->lvlvlv 8 TeV & 14 TeV

To be Ruiqi Zhang's PhD thesis. Supervisors: Cristinel Diaconu, Emmanuel Monnier , Yanwen Liu

OUTLINE

WW-lvlv 8 TeV analysis status


- ➤CONF note last summer
- https://cds.cern.ch/record/1728248
- Being close to publication. Aim for summer paper. Supporting note for paper draft: <u>https://cds.cern.ch/record/1612388</u>

WWW-lvlvlv 8 TeV analysis status

- > A analysis newly started
- Will continue for Run 2

Physics Overview

- Motivation:
 - Important test of the electroweak sector of the Standard Model
 - Irreducible background for Higgs study
 - Sensitive to new physics beyond SM

The predicted total WW cross section (NNLO) $63.2^{+2.0}_{-1.8}$ pb

Event Selection

Use full 2012 dataset : total integrated luminosity 20.3 fb⁻¹

- > 2 opposite sign leptons (ee, $\mu\mu$, $e\mu$ channel) P_T(leading lepton) >25 GeV P_T(trailing lepton) >20 GeV
- Trigger requirement
- > M_{\parallel} >15GeV (10 GeV) for ee and $\mu\mu$ (e μ)
- \rightarrow |M_{II} -M_z |>15 GeV for ee and $\mu\mu$
- \blacktriangleright E_T^{miss*} > 45 GeV (15 GeV) for ee and $\mu\mu$ (e μ)
- \blacktriangleright P_T^{miss*} > 45 GeV (20 GeV) for ee and $\mu\mu$ (e μ)
- \blacktriangleright Δφ(E_T^{miss}, P_T^{miss}) < 0.3 (0.6) ee and μμ (eµ)
- Veto events if containing selected jets
- * E_T^{miss}: calorimeter-based missing transverse momentum
- * P_T^{miss} : track-based missing transverse momentum

suppress QCD, Z+jets

suppress Z+jets

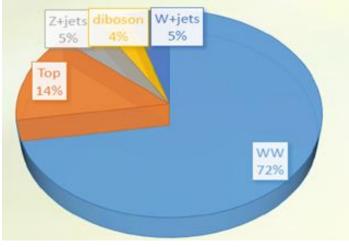
suppress Top

Background estimation methods

Top tt and Wt where no jets are detected

Jet Veto Survival Probability method (base-line) Transfer Factor method Simultaneous Fit method

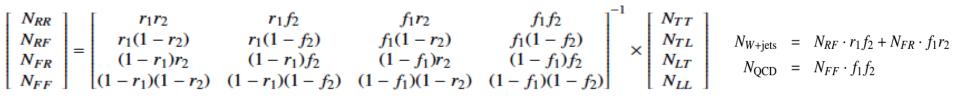
W+jets Jets fake lepton


Matrix method (base -line) Fake Factor method

Z+jets Missing Et mismeasurement

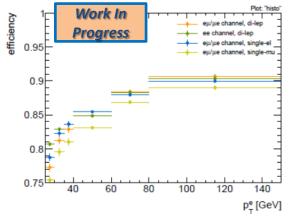
Silmultaneouls Fit method (base-line) Transfer Factor method ABCD method

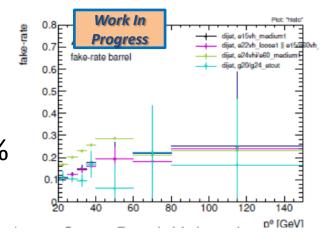
Other Diboson


MC estimation

For data-driven estimation

- Take method with smaller systematics as baseline
- Other methods in agreement with the baseline


W+jets :Matrix method



F: Fake R: real r: signal lepton efficiency f: fake rate T: tight lepton L: loose lepton At the same time this method provides QCD estimation.

Loose lepton definition
 No Impact parameter or isolation requirement

- Fake rate Measured from di-jet events.
- Signal lepton efficiency
 Measured using MC simulation
 with data-to-MC correction
- Main Systematics From uncertainty on input efficiencies ~10% Sample dependence ~50% April 8, 2015

Top: Jet Veto Survival Probability Method

Two Control regions:

B. Mellado, X. Ruan ,Z. Zhang Phys. Rev. D 84 (2011) 096005.

1st CR:

To compare jet-veto efficiency between DATA and MC

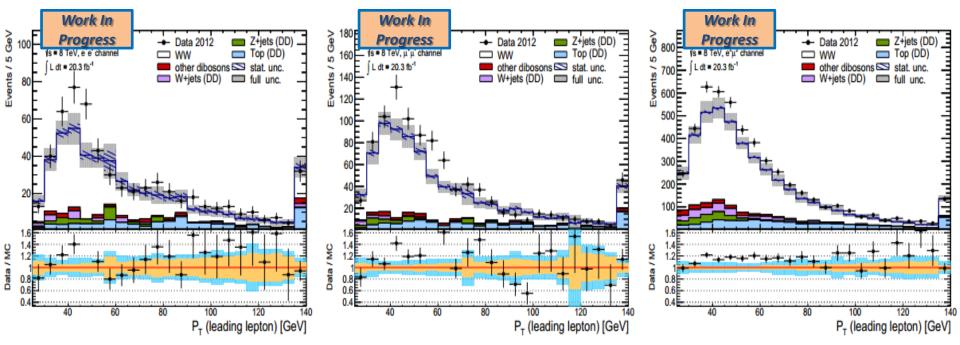
Select pure top events by b-tag requirement

2nd CR:

To derive jet-veto efficiency in top MC

Full selection with <u>Ht*</u>>130GeV instead of jet-veto

Ht : scalar sum of P_T for leptons and jets To suppress the signal contamination


Main Systematics:

- Experimental uncertainties Jet Energy Scale(JES) ~4%, Jet Energy Resolution(JER) ~2%, B-tagging ~4%
- Theoretical uncertainties MC generator/Parton Shower ~6% Non-top subtraction in the 1st CR ~2%

Z+jets : Simultaneous fit

This method use the template fit to simultaneously constrain the background and signal normalization

- In our analysis, Top fixed by JVSP and W+jets fixed by Matrix method
- > DY control region: remove $\Delta \phi(E_T^{miss}, P_T^{miss})$ cut , and invert P_t^{miss}
- Drell-Yan normalisation extracted from the fit
- Main systematic sources Jet Energy Scale(JES) ~4%, Jet Energy Resolution(JER) ~2%, Missing ET ~4%, MC parton shower ~7%

- Data ~20% off
- Shape in agreement between data and prediction

Reconstruction Efficiency (Correction factor)

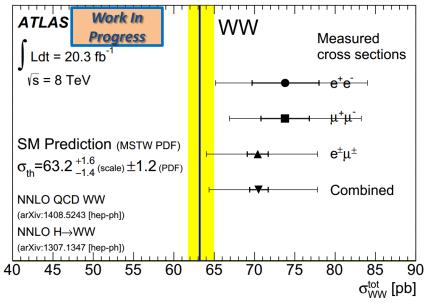
 $C_{WW} = \frac{N_{WW \rightarrow l\nu l\nu}^{reco \ infiducial \ region}}{N_{WW \rightarrow l\nu l\nu}^{gen \ infiducial \ region}}$

Acceptance

$$A_{WW} = \frac{N_{WW \rightarrow l'\nu l'\nu}^{gen in fiducial region}}{N_{WW \rightarrow l'\nu l'\nu}^{all gen}}$$

Take eµ channel as an example

Experimental uncertainties mainly from pileup (1.3%), missing ET (~3%), jet energy scale(~4%), jet energy resolution(1.3%)


Theotical uncertainties jet veto (4.3%), Parton Shower+Generator (4.0%)

Cross-section

$$\sigma(pp \to W^+W^-) = \frac{N_{\text{data}} - N_{\text{bg}}}{A_{WW} \times C_{WW} \times \mathcal{L} \times \text{Br}}$$

Determined from the three channels observed candidates by minimising the log-likelihood function

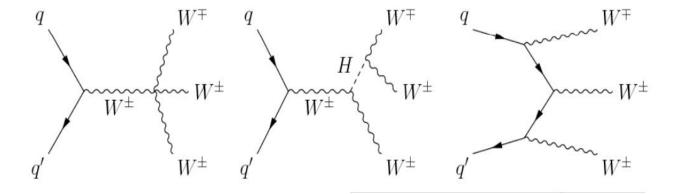
Channel	Cross Section [pb]
ee	$73.9^{+4.2}_{-4.1}$ (stat) $^{+9.0}_{-7.3}$ (syst) $^{+2.3}_{-2.1}$ (lumi)
μμ	$73.8^{+3.1}_{-3.0}(\text{stat}) {}^{+8.4}_{-6.9}(\text{syst}) {}^{+2.2}_{-2.1}(\text{lumi})$
еµ	$70.4^{+1.3}_{-1.3}$ (stat) $^{+6.9}_{-5.8}$ (syst) $^{+2.1}_{-2.0}$ (lumi)
combined	$70.6^{+1.1}_{-1.1}(\text{stat}) {}^{+6.7}_{-5.6}(\text{syst}) {}^{+2.1}_{-2.0}(\text{lumi})$

Compared to theory 63.2 pb (NNLO)

+1.1 σ deviation

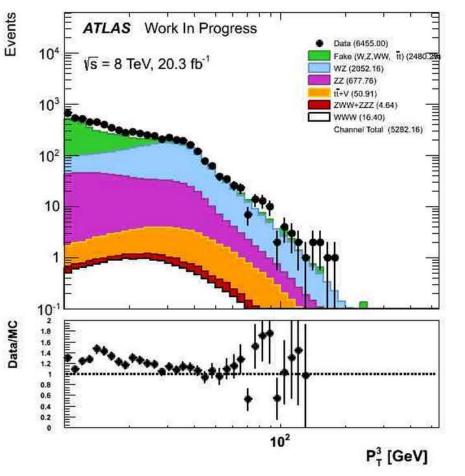
Work In Progress

Introduction


- > Motivation :
 - 4-W vertex never directly measured before .
 Place limits for aQGC
 - ➤ Sensitive to HWW coupling .

- $\mathcal{L}_{s,0} = [(\mathbf{D}_{\mu}\phi)^{\dagger}\mathbf{D}_{\nu}\phi] \times [(\mathbf{D}^{\mu}\phi)^{\dagger}\mathbf{D}^{\nu}\phi]$
- $\mathcal{L}_{s,1} = [(\mathbf{D}_{\boldsymbol{\mu}}\boldsymbol{\phi})^{\dagger}\mathbf{D}^{\boldsymbol{\mu}}\boldsymbol{\phi}] \times [(\mathbf{D}_{\boldsymbol{\nu}}\boldsymbol{\phi})^{\dagger}\mathbf{D}^{\boldsymbol{\nu}}\boldsymbol{\phi}]$

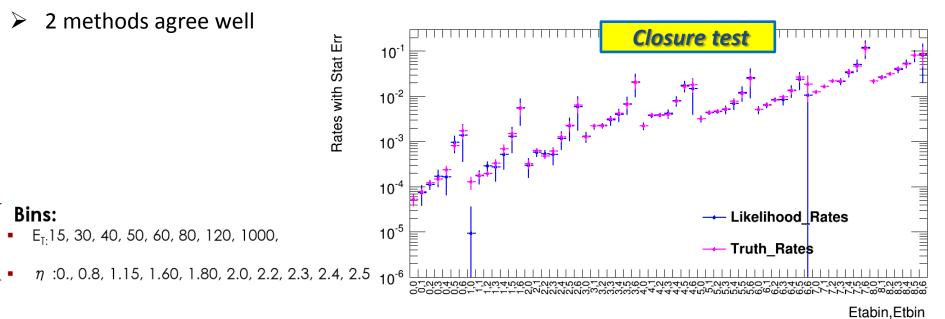
Φ is Higgs doublet


$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{f_{s0}}{\Lambda^4} \mathcal{L}_{s,0} + \frac{f_{s1}}{\Lambda^4} \mathcal{L}_{s,1}$$

- Signal & Background:
 - Signal: Processes with 3W(lv) in final state .
 In 2012 data 1/3 from electroweak WWW production, 2/3 involving Higgs.
 - ➢ Bkg: WW,WZ,ZZ,ttbar,Z+jets,W+jets

Event Pre-selection and backgrounds

- Event PreSelection:
 - > Trigger
 - Single lepton trigger
 - Exactly 3 leptons.
 - ➢ PT > 15 GeV,
 - Trigger matching.
 At least 1 pT>1GeV above online cut
- Backgrounds
 - Source of real three leptons from MC:
 - ➢ WZ, ZZ, ttV.
 - Charge flip leptons:
 - Measure with Likelihood and T&P
 - Fake Leptons (W,Z, WW ,tt)
 - Generalized Matrix method.
- Classification
 - Events are classified depending on the number of Same Flavor Opposite Sign (SFOS) pairs e.g. WZ mostly belongs to 1SFOS
 - Veto Z-peak for 1 SFOS and 2 SFOS


0 SFOS: e[±]e[±]μ[∓], μ[±]μ[±]e[∓] (e[±]e[±]μ[±], μ[±]μ[±]e[±], e[±]e[±]e[±], μ[±]μ[±]μ[±])
1 SFOS: e[±]e[∓]μ[±], e[±]e[∓]μ[∓], μ[±]μ[∓]e[±], μ[±]μ[∓]e[∓]
2 SFOS: e[±]e[±]e[∓], μ[±]μ[±]μ[∓]

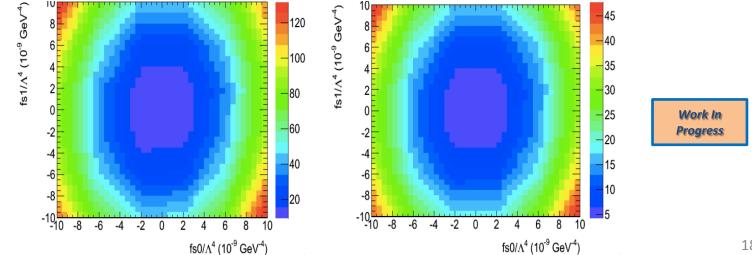
Charge Mis-ID Measurement

Work In Progress

- To estimate the background with electron charge mis-identification
 - Muon case neglected
 - Mostly from bremsstrahlung e->eγ->eee
- \succ 2 Methods. Both parameterized as the function of pT and η
 - Use Z->ee events from data (base-line)
 - Truth method (Cross-check)

Use Z->ee MC and compare reconstructed charge with truth charge.

Anomalous Quartic Gauge Couplings


$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{f_{s0}}{\Lambda^4} \mathcal{L}_{s,0} + \frac{f_{s1}}{\Lambda^4} \mathcal{L}_{s,1} \qquad \qquad \mathcal{L}_{s,0} = [(D_{\mu}\phi)^{\dagger} D_{\nu}\phi] \times [(D^{\mu}\phi)^{\dagger} D^{\nu}\phi] \times [(D^{\mu}\phi)^{\dagger} D^{\mu}\phi] \times [(D^$$

- Effective Lagrangian. The cross-section sensitive to $\frac{f_{s0}}{\Lambda^4}$ and $\frac{f_{s1}}{\Lambda^4}$. \geq
- Samples generated and simulated
- Ongoing study

Might optimize the selection for better aQGC study

Calculate the limits with official tool

Theoretical uncertainties evaluation

Summary

WW analysis

- in 0-jet bin for purely leptonic channel. Classical measurement for electro-weak analysis and also important for Higgs studies or new physics.
- Cross-section measurement as well as unfolding/atgc study already performed
- CONF note released. Towards the paper publication

WWW analysis

- Represent the first inclusive measurement for the WWW production . Sensitive to aQGC and HWW couplings.
- A new analysis in Run1 . Will continue in Run2

• Thanks for your attention

backup

Object selection for WW 8 TEV

Muon: Combined , IDhits

|η|<2.4 , pt>7 GeV Z0*sin(θ) <1 mm sig (d0)<3 Calo Isolation 7<pt≤15GeV, Etcone30/Pt<0.06 15<pt≤20GeV, Etcone30/Pt<0.12 20<pt≤25GeV, Etcone30/Pt<0.18 pt>25GeV, Etcone30/Pt<0.30 Track Isolation 7<pt≤15GeV, Ptcone40/Pt<0.06 15<pt≤20GeV, Ptcone30/Pt<0.08 pt>20GeV, Ptcone30/Pt<0.12 overlap removal with jet Electron: author , good OQ , pt>7 GeV $|\eta| < 2.4$ exclude crack region VeryTight likelihood eID Z0*sin(θ) <0.4 mm sig (d0)<3 Calo Isolation 7<pt≤15GeV,TopoEtcone30/Pt<0.20 15<pt≤20GeV, TopoEtcone30/Pt<0.24 pt>20GeV, TopoEtcone30/Pt<0.28 Track Isolation 7<pt≤15GeV, Ptcone40/Pt<0.06 15<pt≤20GeV, Ptcone30/Pt<0.08 pt>20GeV, Ptcone30/Pt<0.10

overlap removal with jet

Jet : ANtiKt4TopoLCjets

|η|<4.5, pt>25 GeV, JVF >0.5 for jets |η|<2.4, pt<50 GeV
!Ugly !LooserBad
overlap removal with electron</pre>

Impact parameter & Isolation for leptons : Basically Follow HSG3 definition

Object selection for WWW

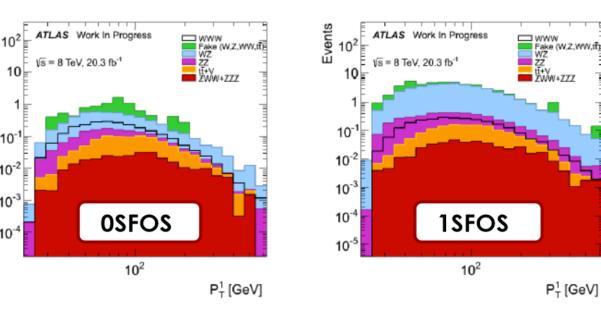
> Electrons:

- (author is 1 or 3) and Tight++
- PT > 15 GeV § |η|< 1.37 or 1.52 < |η| < 2.47</p>
- I ETcone20/ET < 0.10 for pT > 20GeV
- I ETcone20/ET < 0.07 for pT < 20GeV</p>
- ➢ I pTcone20/pT < 0.04</p>
- ➢ |d0/sigma d0| < 3.0</p>
- ➢ z0/sigma z0| < 0.5mm</p>
- > No duplicate μ or e within $\Delta R < 0.1$

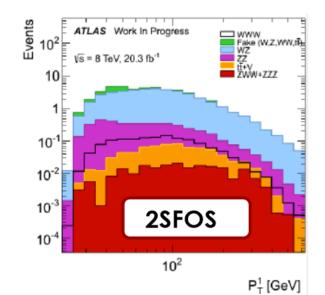
> Jets:

- Anti-kT 4 LC Topo Jets
- ➢ PT > 25 GeV
- ▶ |η|< 4.5</p>
- JVF > 0.5 for jets with |η| < 2.4 and PT < 50GeV
- > No duplicate μ or e within $\Delta R < 0.2$

- Muons:
 - Tight STACO Combined
 - ➢ PT > 15 GeV
 - ▶ |η| < 2.5</p>
 - MCP ID Hits selection
 - I ETcone20/ET < 0.10 for pT > 20GeV
 - I ETcone20/ET < 0.07 for pT < 20GeV
 - I pTcone20/pT < 0.04</p>
 - ➢ |d0/sigma d0| < 3.0</p>
 - ➢ z0/sigma z0| < 0.5mm</p>
 - > No duplicate e within $\Delta R < 0.1$
- > MET:
 - Use STVF


Signal region

P_T¹ [GeV]


-						
SR	OSFOS	1SFOS	2SFOS			
Lepton p_T	p _T >20 GeV					
E _T miss	-	E _T ^{miss} >40 GeV	E _T ^{miss} >35GeV			
Z Veto	- m _{SFOS} -m _Z >15 GeV					
b-tag jet veto	70% b-tag working point					

➢Include the MC samples and charge mis-ID study ► No systeamtics included

➤To be updated once new data-driven study ready

0 SFOS yield					
	Contribution to Total BG [%]				
WZ	40				
ttbar	40				
ttbar + V	7				
ZZ	7				
VVV	3				
WW	3				
Other	< 1				
Total [%]	100				
Total Events @ 20.3 fb-1	13				

Top: Jet Veto Survival Probability Method

(Phys. Rev. D 84 (2011) 096005.)

Two Control regions:

- 1st CR: Subset of 2nd CR. Require a b-jet as tag jet.
 Study the jet-veto efficiency for probing jet.
 To compare jet-veto efficiency from DATA and from MC
- 2nd CR: Full selection with <u>Ht*</u>>130GeV instead of jet-veto Ht cut is to suppress the signal contamination To derive jet-veto efficiency in MC
- Main Systematics:
 - Experimental uncertainties Jet Energy Scale(JES) ~4%, Jet Energy Resolution(JER) ~2%, B-tagging ~4%
 - Theoretical uncertainties
 MC generator/Parton Shower ~6%
 Non-top subtraction in the 1st CR ~2%

Work In Progress

* Ht : scalar sum of P_T for leptons and jets

$$P_2^{\text{Data}} = \left(P_{1(\text{Btag})}^{\text{DATA}}\right)^2 \times \frac{P_2^{\text{MC}}}{\left(P_{1(\text{Btag})}^{\text{MC}}\right)^2}$$

 $N_{Top}^{DATA}(0jet) = N_{Top}^{DATA}(all) \times P_2^{DATA}$

$$\sigma_{WW}^{fiducial} = \frac{N_{obs} - N_{bkg}}{C_{WW} \mathcal{L}}$$

-

Channel	Cross Section [fb]
ee	$73.7^{+4.2}_{-4.1}(\text{stat}) {}^{+7.2}_{-6.2}(\text{syst}) {}^{+2.3}_{-2.1}(\text{lumi})$
μμ	$80.1^{+3.3}_{-3.2}(\text{stat}) \stackrel{+7.2}{_{-6.1}}(\text{syst}) \stackrel{+2.4}{_{-2.3}}(\text{lumi})$
еµ	$373.5^{+6.9}_{-6.8}(\text{stat}) \stackrel{+26.6}{_{-23.6}}(\text{syst}) \stackrel{+11.2}{_{-10.5}}(\text{lumi})$

~

Process	σ [pb]	Δ_{σ}^{Total} [pb]	$\Delta_{\sigma}^{S cale}$	Δ_{σ}^{PDF}	$\Delta^{Br.}_{\sigma}$	Calculation
1) $q\bar{q} \rightarrow WW$	53.2	+2.5	+2.3	+1.0	-	NLO MCFM
2) $gg \rightarrow WW$	1.4	+0.3	+0.3	+0.1 -0.1	-	LO MCFM
3) $q\bar{q} \rightarrow WW$	59.1	+1.6 -1.7	+1.2 -1.0	+0.9 -0.9	-	NNLO [7]
4) $gg \rightarrow H \rightarrow WW$	4.1	±0.5	± 0.3	±0.3	±0.2	NNLO [8]
W^+W^- production (pNNLO)	58.7	+3.0	+2.7 -2.3	+1.3 -1.4	1)+2)+4)	
W^+W^- production (NNLO)	63.2	+2.0 -1.8	+1.6 -1.4	+1.2 -1.2	3)+4)	