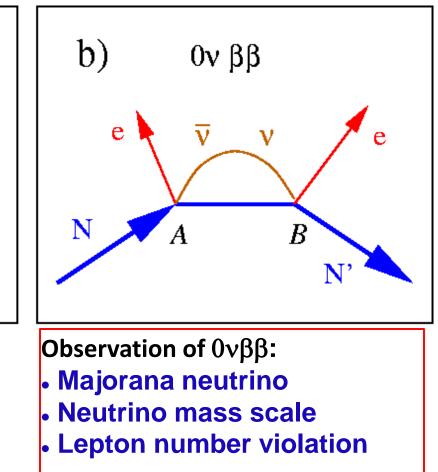
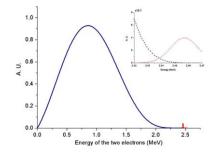

PandaX III: A 200kg High Pressure Xe Gas TPC


Searching for ¹³⁶Xe Neutrino-less Double Beta Decay

> K.L. Giboni for PandaX III SHANGHAI JIAOTONG UNIVERSITY

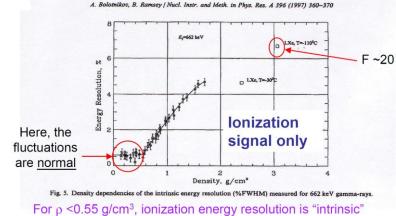
Two Types of Double Beta Decay

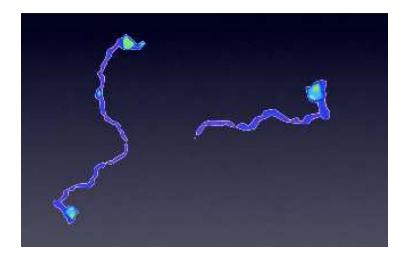

2vββ mode: a conventional 2nd order process in Standard Model

Key requirements for discovering OvDBD

- 1. Low radioactivity (more stringent requirement than for DM search)
- 2. Good energy resolution (sub% level)
- 3. Distinguishing Background from OvDBD (Tracking, Cerenkov Radiation)
- 4. Scalability

(price of isotope, exp expandability)

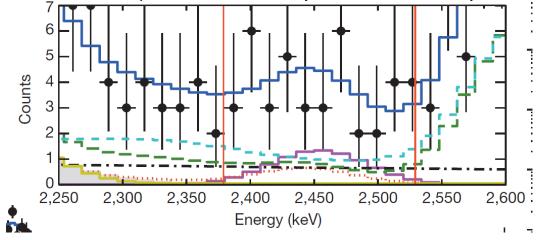



New Game: HP Gas TPC

- possibly excellent energy resolution: intrinsic 0.3% FWHM (7.5 keV)
- Low-background (10⁻³ counts/keV/kg/yr)
- Tracking capability
- Scalability (there is already 1 ton ¹³⁶Xe in the world, \$30M)

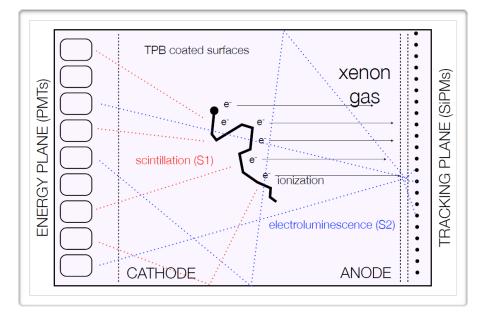
AdvantagesyofeblighiBressure

Tracking capability



Best Result with ¹³⁶XE? 2000¹⁴
200kg Liquid Xenon TPC, 2 years of running

 Superb control in radioactivity and energy resolution (3%)


•39 events observed in 2σ region. 31 background events expected

Comparison with EXO200 Results Same mass: 200 kg of enriched ¹³⁶Xe

- Similar radioactive background
- Similar energy resolution < 3% FWHM</p>
- Tracking capability (99% γ-ray rejection)
- Background Free: In 2 years, 31 events are reduced to 0.3 events!

NEXT Experiment Fundamentals

EL mode is essential to get lineal gain, therefore avoiding avalanche fluctuations and fully exploiting the excellent Fano factor in gas •It is a High Pressure Xenon (HPXe) TPC operating in EL mode.

•It is filled with 100 kg of Xenon enriched at 90% in Xe-136 (in stock) at a pressure of 15 bar.

•The event energy is integrated by a plane of radiopure PMTs located behind a transparent cathode (energy plane), which also provide t0.

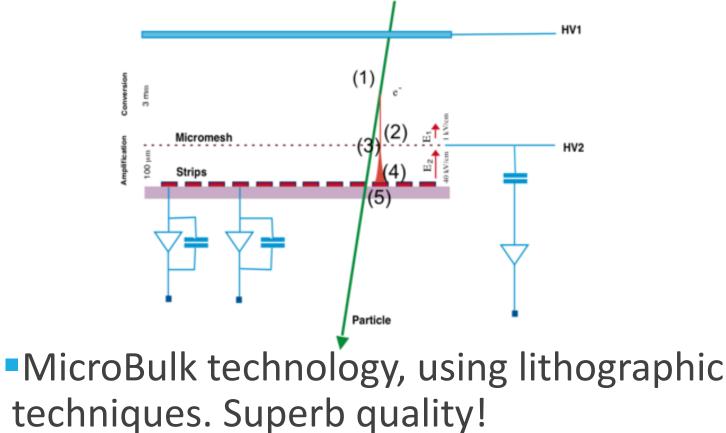
•The event topology is reconstructed by a plane of radiopure silicon pixels (MPPCs) (tracking plane).

PandaX-III High Lights

Alternative Realization For Read out: Symmetric Charge Read out

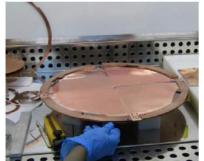
- Stage1:MircoMegas, energy resolution 2-3% FWHM
- Stage2:TopMetal (modified CMOS), energy resolution 0.5%
- Benefits: radiopurity, scalability, and ultimate energy resolution, tracking
- Light readout? (optional)
- New type HP vessel
- 200 kg modules for scalability to 1 ton
- Deepest underground lab (CJPL)

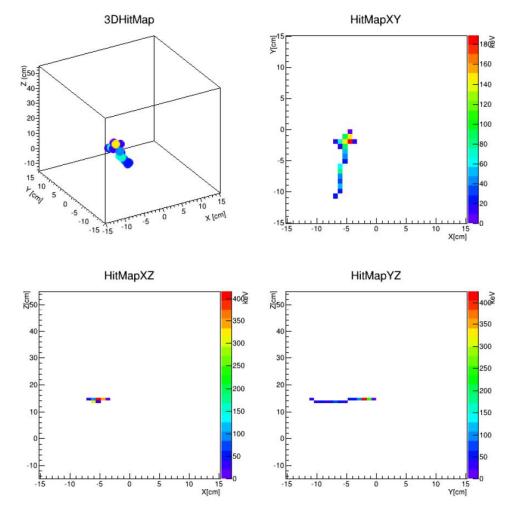
PandaX-III Physical goals200kg module


- Demonstrate Potential of Technology
- Possibly Discovery of 0vbb
- •Easy upgrade to 1 ton (5 modules)
- Timely realization of G2 neutrino experiment Covering the Inverse Mass Hierarchy Range
 - JUNO, LBNF, INO, known by 2020?
 - What if it is inverse mass hierarchy?

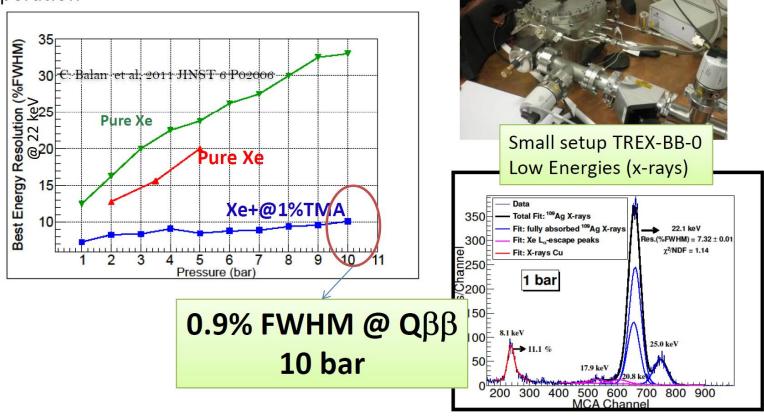
 ¹³⁶Xe 0vDBD Events
 2 electrons with total energy 2.458 MeV Roughly 100k ionization electrons
 Track size in 10 bar gas, about 30 cm

2 tracks from same vertex, roughly back to back, increasing ionization density towards ends of tracks


Ionization measurement along track


-Read Outs Opting Pin Viergenegas amplification across very thin layers 50µm

Real tracks in NEXT-MM @ UNIZAR



Energy ~1274 keV (Na-22 photo peak) "half a 2νββ

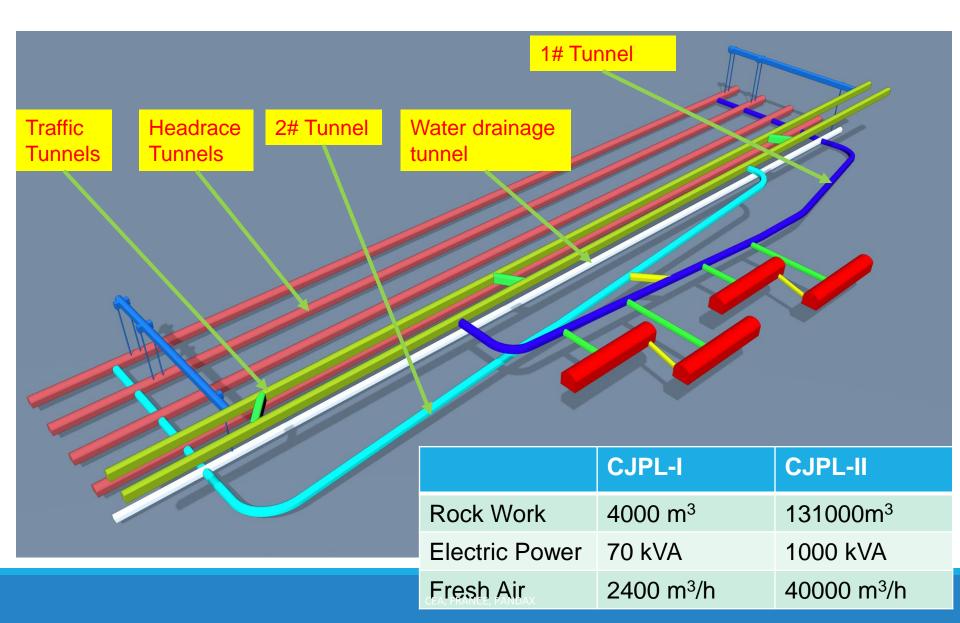
event"

Energy resolution ... in Xenon?

- Addition of TMA to Xe: perfect combination!
- higher gains, better E res, more stable operation

Read Out: Two Ends Plates • Area = πr^2 = (0.70)² π = 1.5 m²

- Either Pixel Size = 0.5cm²
- Total Number of **Pixels**: 30, 000 x 2 = **60 k**
- Or Strips (X Y), 0.5 cm Wide, 20 cm Long
- Total Number of Strips: 3,000 x 2 = 6 k


Requirement for FE Electronics

ASIC chips, mature technology
 AGET (AFTER), 64 channel

Radioactivity? Need to be integrated as much as possible,

High-pressure 10-15bar

Preliminary Design of CJPL-II

Schedule

- (Aggressive) and Competitive among next generation of DBD expts
- Research and design during 2015
- Construction and Installation during 2016
- Start commissioning early 2017

Country Institution Main Interest Phospective Collars (Collars) Collars (Collars) Collars (Collars) Collars (Collars) Collars (Collars) Collars (Collars) Collars) Co

	USTC	Electronics, MicroMegas
	PKU	Background Counting
	ZSU	Background Counting, Simulation
	CCNU	Alt. Detection(Topmetal)
France	CEA	Electronics, ASIC Design (AGET)
Russia	MEPHI	Vessel, ¹³⁶ Xe Enrichment
Spain	Zaragoza	MicroMegas, TMA Doping
■US	Maryland	Alt. Detection (Topmetal), Simulation
	LBL	Alt. Detection (Topmetal)
	Princeton	Radioactive Background Reduction

Surpany the most important discovery in particle/nuclear physics in next 5-10 yrs.

- Current generation of experiments has not shown scalability to 1 ton, necessary to cover inverted v mass hierarchy
- •HP xenon gas TPC is the most promising technology to reach 1 - 5 ton
- Many key ingredients already in place