Inhomogeneous condensation in dense nuclear matter

11-th Polish Workshop on relativistic Heavy-Ion Collisions

17/1/2015 - Warsaw

Francesco Giacosa
in collaboration with
Achim Heinz, Marc Wagner, Dirk H. Rischke (Frankfurt Univ.)

Outline

Part I:

- An hadronic model of QCD: the eLSM
- Study at nonzero density
- Inhomogenoeus condensation: chiral density wave

Part II:

- A lattice-like approach for arbitrary inhomogenoeus condensation
- Applications to $1+1$ dimensional models
- Application to the NJL model

Part I

Fields of the eLSM

- Quark-antiquark mesons: scalar, pseudoscalar, vector and axialvector quarkonia.
- Additional mesons: The scalar and the pseudoscalar glueballs
- Baryons: nucleon doublet and its partner
(in the so-called mirror assignment)

We construct the Lagrangian of the so-called Extended Linear Sigma Model (ELSM) according to
chiral invariance and dilatation symmetry and their explicit breakings.

Model of QCD - eLSM

1 Uniwersutet
Humanistuczno - Przurodniczy

$$
\begin{aligned}
& \mathcal{L}= \frac{1}{2}\left(\partial_{\mu} G\right)^{2}-\frac{1}{4} \frac{m_{G}^{2}}{\Lambda^{2}}\left(G^{4} \ln \left|\frac{G}{\Lambda}\right|-\frac{G^{4}}{4}\right)+\operatorname{Tr}\left[\left(D^{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)\right] \\
&-m_{0}^{2}\left(\frac{G}{G_{0}}\right)^{2} \operatorname{Tr}\left[\Phi^{\dagger} \Phi\right]-\lambda_{1}\left(\operatorname{Tr}\left[\Phi^{\dagger} \Phi\right]\right)^{2}-\lambda_{2} \operatorname{Tr}\left[\left(\Phi^{\dagger} \Phi\right)^{2}\right] \\
&+\left(\frac{G}{G_{0}}\right)^{2} \operatorname{Tr}\left[\left(\frac{m_{1}^{2}}{2}+\Delta\right)\left(\left(L^{\mu}\right)^{2}+\left(R^{\mu}\right)^{2}\right)\right] \\
&-\frac{1}{4} \operatorname{Tr}\left[\left(L^{\mu \nu}\right)^{2}+\left(R^{\mu \nu}\right)^{2}\right]+\operatorname{Tr}\left[H\left(\Phi^{\dagger}+\Phi\right)\right] \\
&+c_{1}\left[\operatorname{det}(\Phi)-\operatorname{det}\left(\Phi^{\dagger}\right)\right]^{2}+\frac{h_{1}}{2} \operatorname{Tr}\left[\Phi^{\dagger} \Phi\right] \operatorname{Tr}\left[L_{\mu} L^{\mu}+R_{\mu} R^{\mu}\right] \\
&+h_{2} \operatorname{Tr}\left[\Phi^{\dagger} L_{\mu} L^{\mu} \Phi+\Phi R_{\mu} R^{\mu} \Phi^{\dagger}\right]+2 h_{3} \operatorname{Tr}\left[\Phi R_{\mu} \Phi^{\dagger} L^{\mu}\right] \\
& \Phi=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\frac{\left(\sigma_{N}+a_{0}^{0}\right)+i\left(\eta_{N}+\pi^{0}\right)}{\sqrt{2}} & a_{0}^{+}+i \pi^{+} & K_{0}^{\star+}+i K^{+} \\
a_{0}^{-}+i \pi^{-} & \frac{\left(\sigma_{N}-a_{0}^{0}\right)+i\left(\eta_{N}-\pi^{0}\right)}{\sqrt{2}} & K_{0}^{\star 0}+i K^{0} \\
K_{0}^{\star-}+i K^{-} & \bar{K}_{0}^{\star 0}+i \bar{K}^{0} & \sigma_{S}+i \eta_{S}
\end{array}\right) \\
& L^{\mu}, R^{\mu}= \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\frac{\omega_{N} \pm \rho^{0}}{\sqrt{2}} \pm \frac{f_{1 N} \pm a_{1}^{0}}{\sqrt{2}} & \rho^{+} \pm a_{1}^{+} & K^{\star+} \pm K_{1}^{+} \\
\rho^{-} \pm a_{1}^{-} & \frac{\omega_{N} \mp \rho^{0}}{\sqrt{2}} \pm \frac{f_{1 N} \mp a_{1}^{0}}{\sqrt{2}} & K^{\star 0} \pm K_{1}^{0} \\
K^{\star-} \pm K_{1}^{-} & \bar{K}^{\star 0} \pm i \bar{K}_{1}^{0} & \omega_{S} \pm f_{1 S}
\end{array}\right)
\end{aligned}
$$

S. Janowski, D. Parganlija, F. Giacosa, D. H. Rischke, Phys. Rev. D84, 054007 (2011)
D. Parganlija, P. Kovacs, G. Wolf , F. Giacosa, D. H. Rischke, Phys.Rev. D87 (2013) 014011

Results of the fit (11 parameters, 21 exp. quantities)

arXiv:1208.0585

Microscpic
eLSM

Overall phenomenology is good. Further quantities calculated afterwards.

Scalar mesons $\mathrm{a}_{0}(1450)$ and $\mathrm{K}_{0}(1430)$ above 1 GeV and are quark-antiquark states. The chiral partner of the pion (the σ) is $\mathrm{fo}_{\mathrm{o}}(1370)$.

Importance of the (axial-)vector mesons
Francesco Giacosa

Baryon sector in the EISM

($\mathrm{Nf}=2$ only)

Nucleon and its chiral partner; chiral symmetry and dilatation invariance (Axial-)vector mesons are included

Mirror assignment: (C. De Tar and T. Kunihiro, PRD 39 (1989) 2805)

$$
\begin{array}{ll}
\Psi_{1, R} \rightarrow U_{R} \Psi_{1, R} & \Psi_{1, L} \rightarrow U_{L} \Psi_{1, L} \\
\Psi_{2, R} \rightarrow U_{L} \Psi_{2, R} & \Psi_{2, L} \rightarrow U_{R} \Psi_{2, L}
\end{array}
$$

A chirally invariant mass-term is possible!

$$
\begin{gathered}
m_{0}\left(\bar{\Psi}_{1, L} \Psi_{2, R}-\bar{\Psi}_{1, R} \Psi_{2, L}-\bar{\Psi}_{2, L} \Psi_{1, R}+\bar{\Psi}_{2, R} \Psi_{1, L}\right) \\
\mathcal{L}_{\text {mirror }}=\bar{\Psi}_{1 L} i \gamma_{\mu} D_{1 L}^{\mu} \Psi_{1 L}+\bar{\Psi}_{1 R} i \gamma_{\mu} D_{1 R}^{\mu} \Psi_{1 R}+\bar{\Psi}_{2 L} i \gamma_{\mu} D_{2 R}^{\mu} \Psi_{2 L}+\bar{\Psi}_{2 R} i \gamma_{\mu} D_{2 L}^{\mu} \Psi_{2 R} \\
-\widehat{g}_{1}\left(\bar{\Psi}_{1 L} \Phi \Psi_{1 R}+\bar{\Psi}_{1 R} \Phi^{\dagger} \Psi_{1 L}\right)-\widehat{g}_{2}\left(\bar{\Psi}_{2 L} \Phi^{\dagger} \Psi_{2 R}+\bar{\Psi}_{2 R} \Phi \Psi_{2 L}\right)+\mathcal{L}_{\text {mass }}
\end{gathered}
$$

Mass of the nucleon

$$
m_{N, N^{*}}=\sqrt{m_{0}^{2}+\left(\frac{\widehat{g}_{1}+\widehat{g}_{2}}{4}\right)^{2} \phi^{2}} \pm \frac{\left(\widehat{g}_{1}-\widehat{g}_{2}\right) \phi}{4} \quad \begin{aligned}
& N=N(940) \\
& N^{*}=N^{*}(1535)
\end{aligned}
$$

If $m_{0}=0 \rightarrow$ only the quark condensate generates the masses. $\mathrm{m}_{\mathrm{N}} \sim \phi$

$$
m_{0}=460 \pm 136 \mathrm{MeV}
$$

Using $g_{A}^{N}=1.26(\exp), g_{A}^{N^{*}} \approx 0.2$ (latt) and $\Gamma_{\mathrm{N}^{*} \rightarrow \mathrm{~N} \pi} \approx 67 \mathrm{MeV}$
m_{0} parameterizes the contribution which does not stem from the quark condensate Crucial also at nonzero temperature and density

Test: pion-nucleon scattering lengths

$a_{0}^{-}=(6.04 \pm 0.63) \cdot 10^{-4} \mathrm{MeV}^{-1} \quad a_{0}^{-(\exp)}=(6.4 \pm 0.1) \cdot 10^{-4} \mathrm{MeV}^{-1}$
$a_{0}^{+} \approx\left(\right.$ from -20 to $\left.+20 \cdot 10^{-4}\right) \mathrm{MeV}^{-1} \quad a_{0}^{+(\text {exp })}=(-8.8 \pm 7.2) \cdot 10^{-4} \mathrm{MeV}^{-1}$
Large theoretical uncertainty due to the scalar-isosocalar sector
Importance of both vector mesons and mirror assignment in order to get these results

What we are studying rigth now in the vacuum:

$$
\begin{aligned}
& p+p \rightarrow p+p+X \\
& X=\omega, \eta, \text { lepton pair, } \ldots
\end{aligned}
$$

Many diagrams to calculate; the advantage is :chiral symmetry (and also g.i.) built in.

$$
p+p \rightarrow p+p+\omega
$$

ω

Basic considerations for nonzero density

The σ-field of our model corresponds to the resonance fo(1370) ...and not to the lightest scalar resonance fo(500).

The question is: what is fo(500) and, more in general, what are the scalar states below 1 GeV ?

A good phenomenology (masses and decays) is achieved when interpreting the light scalar states as tetraquarks: $f_{0}(500) \approx[\bar{u}, \bar{d}][u, d]$ (bound states of a diquark and an anti-diquark)

Back to nucleons: where does mocomes from?

$$
m_{0}\left(\bar{\Psi}_{1, L} \Psi_{2, R}-\bar{\Psi}_{1, R} \Psi_{2, L}-\bar{\Psi}_{2, L} \Psi_{1, R}+\bar{\Psi}_{2, R} \Psi_{1, L}\right)
$$

By requiring dilatation invariance one should modify the mass-term as:

$$
\underset{\substack{\text { Tetraquark } \\ \text { New field: fo(500) }}}{\operatorname{a}}\left(\bar{\Psi}_{1, L} \Psi_{2, R}-\bar{\Psi}_{1, R} \Psi_{2, L}-\bar{\Psi}_{2, L} \Psi_{1, R}+\bar{\Psi}_{2, R} \Psi_{1, L}\right)
$$

By shifting : $\chi \rightarrow \chi_{0}+\chi$ one has: $m_{0}=a \chi_{0}$

m_{0} originates form the tetraquark condensate
Note, also, a tetraquark exchange naturally arises in nucleon-nucleon interactions

Nuclear matter saturation and compressibilty

Details in: S. Gallas, F. G:, G. Pagliara, Nucl.Phys. A872 (2011) 13-24 arXiv:1105.5003

Inhomogeneous condensation at nonzero

$$
\text { Up to now : } \phi=\text { const }
$$

...but one can have a Chiral Density Wave (Ansatz!):

$$
\begin{gathered}
\phi(z)=\phi \cos (2 f z) \\
\left\langle\pi^{0}\right\rangle=\phi \sin (2 f z) / Z
\end{gathered}
$$

Inhomogeneous condensation/2

$$
\phi(z)=\langle\sigma\rangle=\phi \cos (2 f z)
$$

$$
\left\langle\pi^{0}\right\rangle=\phi \sin (2 f z) / Z
$$

$$
\rho_{C D W} / \rho_{0}=2.4
$$

A. Heinz, F.G., D. H. Rischke, Nucl. Phys. A 933, 34-42, 2015.

Part II

The finite mode approach

"Wish list" for further calculations

- arbitrary modulations: $\sigma(x)$ is not an input
- several inhomogeneous fields: $\sigma(x), \pi(x), \omega(x), \ldots$
- no limitations on the dimension of the model: $1+1,1+2, \ldots$
- higher dimensional modulations: $\sigma(x, y), \sigma(x, y, z), \ldots$

New numerical tool: so-called "finite-mode approach"

Lattice inspired method, which allows to access all points of the "wish list".

Not so fast, there are a few limitations:

- numerically complex
- finite size corrections
- optimization and tests
M. Wagner, arXiv:hep-ph/0704.3023v1 [hep-lat]

The Gross-Neveau (GN) model

$$
\mathscr{L}_{\mathrm{GN}}=\sum_{i=1}^{N_{c}} \bar{\psi}_{i}\left(\gamma_{\mu} \partial_{\mu}+\gamma_{0} \mu\right) \psi_{i}+\frac{1}{2} g^{2}\left(\sum_{i=1}^{N_{c}} \bar{\psi}_{i} \psi_{i}\right)^{2}
$$

- in $1+1$ dimensions renormalizable
- asymptotic freedom
- discrete chiral symmetry
- in the large N_{c} limit chiral symmetry is broken
M. Thies, K. Urlichs, [hep-th/0302092]
G. Basar, G. V. Dunne and M. Thies, arXiv:0903.1868 [hep-th]

The finite approach for the GN model

Effective action of the GN model:

$$
S=N_{c}\left[\frac{1}{2 \lambda} \int d^{2} x \sigma(x)^{2}-\ln (\operatorname{det} Q)\right], \quad Q=\gamma_{\mu} \partial_{\mu}+\gamma_{0} \mu+\sigma(x)
$$

Discretized effective action for a homogeneous condensate $\sigma(x) \equiv \sigma$:

$$
\frac{S}{N_{c}}=L_{1} L_{0} \frac{\sigma^{2}}{2 \lambda}-\sum_{n_{0}=0}^{N_{0}-1} \sum_{n_{1}=-N_{1}}^{N_{1}} \ln \left\{\left[\left(\frac{2 \pi}{L_{0}}\left(\frac{1}{2}+n_{0}\right)\right)^{2}+\left(\frac{2 \pi}{L_{1}} n_{1}\right)^{2}+\sigma^{2}-\mu^{2}\right]^{2}+\left[2 \mu \frac{2 \pi}{L_{0}}\left(\frac{1}{2}+n_{0}\right)\right]^{2}\right\}
$$

- finite spacetime volume $L_{0} L_{1}$
- fermion fields as superposition of plane waves
- finite number temporal modes N_{0} and space modes N_{1}

The phase diagram of the GN model

The shape of the condensate $\hat{\sigma}(x)$ close to I / III phase boundary.

- I: homogeneous broken phase
- II: restored phase
- III: inhomogeneous phase
$\hat{\sigma}:=\sigma / \sigma_{0}, \quad \hat{\mu}:=\mu / \sigma_{0}, \quad \hat{t}:=T / \sigma_{0}$

The chiral GN model

$$
\mathscr{L}_{\chi \mathrm{GN}}=\sum_{i=1}^{N_{c}} \bar{\psi}_{i}\left(\imath \gamma_{\mu} \partial^{\mu}+\gamma_{0} \mu+\sigma+\imath \gamma_{5} \eta\right) \psi_{i}+\frac{1}{2} \lambda\left(\sigma^{2}+\eta^{2}\right)
$$

discrete chiral symmetry \rightarrow continuous chiral symmetry

Analytic solution is known, only two phases are realized

$\hat{t}<\hat{t}_{c}$, all $\hat{\mu}$: chiral density wave

$$
\langle\sigma\rangle \sim \phi \cos (2 \mu x) \text { and }\langle\eta\rangle \sim \phi \sin (2 \mu x)
$$

$\hat{t}>\hat{t}_{c}$, all $\hat{\mu}$: restored chiral symmetry

$$
\langle\sigma\rangle=0 \text { and }\langle\eta\rangle=0
$$

The phase diagram of the chiral GN model

 Humanistuczno - PrzurodniczyJona Kochanowskiego w Kiekoch

CDW is not an input! It follows from a dynamical minimization of the σ - and the η-condensate.

The NJL model

Lagrangian of the NJL model

$$
\begin{gathered}
\mathscr{L}_{N J L}=\sum_{i=0}^{N_{c}} \bar{\psi}_{i} \not \psi_{i}-\frac{G}{N_{c}}\left[\left(\sum_{i=0}^{N_{c}} \bar{\psi}_{i} \psi_{i}\right)^{2}+\left(\sum_{i=0}^{N_{c}} \bar{\psi}_{i} \gamma \gamma_{5} \psi_{i}\right)^{2}\right] \\
\frac{S}{N_{c}}=\left[\frac{\lambda}{2} \int d^{4} x m^{* 2}(x)-\ln (\operatorname{det} Q)\right], \quad Q=\gamma_{\mu} \partial_{\mu}+\gamma_{0} \mu+m^{*}(x)
\end{gathered}
$$

Looks similar but:

- $1+3$ dimensional model
- not renormalizable
- continuous chiral symmetry
- regularization scheme effects phase diagram
- computational effort increases strongly
D. Nickel, arXiv:0906.5295 [hep-ph]
S. Carignano, M. Buballa, arXiv:1111.4400 [hep-ph]

The phase diagram of the NJL model

- I: homogeneous broken phase
- II: restored phase
- III: inhomogeneous region
$m_{0}=350 \mathrm{MeV}, N_{i}=120$, and $N_{00}=120$

Summary and outlook

- relevance of inhomogeneous phases at moderate densities
- extension to three flavours
- further parity doublets
- Δ resonances
- spatial ω_{0} modulations
- ...
- solid approach to calculate inhomogeneous phases
- higher dimensional modulations
- interweaving chiral spirals
- further effective models
- diquark condensation
- ...

Thank You

Inhomogeneous condensation/3

Three distinguished minima are present:

- vacuum ground state $(\rho=0)$ at $\phi=154.4 \mathrm{MeV}$
- homogeneous nuclear matter ground state ($\rho=\rho_{0}$) at $\phi=149.5 \mathrm{MeV}$
- local minima at $\phi=38.3 \mathrm{MeV}$ with $f \neq 0$
ϕ as a function of the extrema of $\bar{\chi}, \bar{\omega}_{0}$ and f.

Description of nuclear matter

Bethe-Weizsäcker formula:

For large systems $A \rightarrow \infty$ and neglecting a_{c} :

$$
E_{B} / A\left(\rho_{0}\right)=E / A\left(\rho_{0}\right)-m_{N}=-16 \mathrm{MeV}
$$

with $\rho_{0}=0.16 \mathrm{fm}^{-3}$ and $m_{N}=939 \mathrm{MeV}$.

Nuclear matter: why does it bind?

The resonance fo(500), here interpreted as a tetraquark, plays an important role for the stability of nuclear matter.

Related 'amusing' question: does nuclear matter binds at large Nc?

As soon as the lightest scalar $\mathrm{fo}_{0}(500)$ is not a quarkonium, nuclear matter ceases to exist already for $\mathrm{Nc}=4$.

Details in: L. Bonanno and F.G., Nucl.Phys.A859:49-62,2011 arXiv:1102.3367 [hep-ph]

Chiral phase transition

arXiv:1105.5003

Critical density at the onset of chiral restoration (first order):

$$
\rho_{\text {crit }} / \rho_{0} \approx 2.5
$$

(slightly dependent on mo)

Chiral phase transition/2

Masses

The masses drop almost to zero above the critical value of the chemical potential.

