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Motivation

Applicability of relativistic viscous hydrodynamics

@ relativistic hydrodynamics plays an important role in the "standard model" of HIC!

Time—>

M+

Energy Stopping Hydrodynamic ;
Hard Collisions Evolution Hadron Freezeout

Initial state

@ initially perfect fluid hydrodynamics was used
@ strongly-coupled N = 4 SYM theory imposes lower bound of the 11/82
= dissipative corrections important
= one should use relativistic viscous hydrodynamics

@ models including viscous hydrodynamics describe experimental data very well
(Bozek, Schenke, Heinz, ...)

TFigure taken from arXiv:1201.4264.
2Kovtun, Son, Starinets, Phys. Rev. Lett. 94, 111601 (2005)
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Second-order non-conformal viscous hydrodynamics

Transport coefficients

@ thermodynamic gradients = transport phenomena = transport coefficients

@ hydrodynamic evolution is governed by energy and momentum continuity equation
(no charge diffusion)

QT =0 TH = EUFUY — AFY (Peq + ) +

Hvise

@ evolution equations for the shear-stress tensor 7t and bulk viscous pressure 1 in
relaxation-time approximation
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pn = C =P = 1. relaxation time approximation imposes 7n = 7, = Teq
@ form of transport coefficients depend on the method employed

@ various methods available: Israel-Stewart 3, Grad’s 14-moment approximation 4,
Chapman-Enskog method 5 , ...

3lsrael, Stewart, Ann. Phys. (N.Y.) 118, 341 (1979)

4Denicol, Niemi, Molnar, Rischke, Phys. Rev. D 85, 114047 (2012)
Denicol, Jeon, Gale, Phys. Rev. C 90, 024912 (2014)

5 Jaiswal, Phys. Rev. C 87, 051901 (2013)
Jaiswal, Ryblewski, Strickland, Phys. Rev. C 90, 044905 (2014)
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Second-order non-conformal viscous hydrodynamics
Bulk and shear viscosity of QGP

@ recently the properties of the QGP are studied more precisely (e.g. n/S(T))

@ HIC research devoted mainly to the extraction of the 1/S, a systematic and
self-consistent study of the effect of /S has not been performed so far

@ atlarge T theory is nearly conformal, the bulk viscosity is expected to be small

@ however QCD is non-conformal theory, some estimates suggest that {/S peaks
around T ¢, and may be comparable with /S (having minimum around T¢) 7
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SFigure taken from S. I. Finazzo, R. Rougemont, H. Marrochio, J. Noronha, arXiv:1412.2968
7Figure taken from J. Noronha-Hostler, forthcoming
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Second-order non-conformal viscous hydrodynamics

Breaking down of the canonical expansion

@ canonical treatment within viscous hydrodynamics is based on an expansion of the
general distribution function around local equilibrium state

p'uu[,z
f(x,P) = fiso T +6f(x, p)
e — S——
o NLO

= early thermalization required
@ large anisotropy at early times predicted by microscopic models (AdS/CFT (see
J.Jankowski talk), ...)
@ studied systems are subject to rapid longitudinal expansion
= large viscous corrections to the ideal energy-momentum tensor
= canonical expansion breaks down
= maAv catise Linbhvsical results
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Anisotropic hydrodynamics - possible way out

Tinti, Florkowski, Phys. Rev. C 89, 034907 (2014)
Nopoush, Ryblewski, Strickland, Phys. Rev. C 90, 014908 (2014)

@ anisotropic hydrodynamics — one expands around an anisotropic background,
momentum-space anisotropies are built into the LO (see L.Tinti talk)

VCEETATE
f(X/ D) — fiso [W] + éf(X/ p)
—_— S——
Lo NLO

spheroidal ansatz for =,,, give (LRF) pHZ,,p" = P2 + P2 + (1 + &)p? (R-S form)
anisotropy tfensor decomposition

=TI + (S,UV — AP
U =0 yar=0 &, =0 A" =3
& = diag(O, 5) &= (éx/ &y, éz)
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Anisotropic hydrodynamics

Tinti, Florkowski, Phys. Rev. C 89, 034907 (2014)
Nopoush, Ryblewski, Strickland, Phys. Rev. C 90, 014908 (2014)

equations of motion for &, ®, A, T for (0+1)d case are obtained by taking moments of
the Boltzmnann equation in the relaxation time approximation

u
P, f = pu_“(feq -1 N A, fo’Pp.“]mp.“nJr] f=uy, fdppmmp#nl(feq -1
Teq Teq

y,
0th moment (1 eq.) 9Nt = T_“(Ngq — N¥)
eq
uwd, T = u i(r“" —TH)
st moment (2 eq.) vor T Ve
UTly = T
i vi Auv i yi Ur Auv v
2nd moment (1 eq.) XXM = XLXJTTq (eeg -t )
i = 0123

@ anisotropic hydrodynamics has various appealing features (no negative pressures,
reproduced free-streaming limit, kinetic coefficients included implicitly ...)
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Quantifying efficacy of various approximation schemes

@ goal:
assess efficacy of various dissipative hydrodynamic approaches by comparing their
predictions with exact solutions of the underlying kinetic theory equations

@ it is possible using relaxation fime approximation for collisional kernel and simple
boost-invariant fransversely homogeneous symmetry of the system (Bjorken flow)
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Exact solution of the RTA Boltzmmann equation for a massive gas
General setup

@ Boltzmmann equation in the reloxation time approximation

fed — f
P auf(x,p) = Clf(x,P)]  Clfl = puy
eq
background distribution (Bolizmann statistics)
Js pfuy
e = exp|-———
(2ny? p( T
@ for fransversely homogeneous boost-invariant system
w = toy - zE v =1E-2zp (Bialas, Czyz)
of _fe—f
0T Teq
- o W2t (m? 4 ph)e?
(,w,pL) = (2n) exp| - Tz
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Exact solution of the RTA Boltzmann equation for a massive gas
Formal solufion

@ formal solution

T
d ’
f(,w,pL) = D(T,To)fo(w,pJ_)JrfT—zT,) D(z, ") Y7, w, pL)
0 e
7
d,.L.//
D(t2,71) = exp —fm

T

@ inifial condition (Romatschke-Strickland form)

VO + oyw? 4 (P + p2 )12
Ao 7o

fo(w,p1) = (Q‘C:)Sexp—

&g = &(1p) - initial value of the anisotropy parameter
Ao = A(7p) - initial transverse-momentum scale
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Exact solution of the RTA Boltzmann equation for a massive gas
Thermodynamic variables

@ particle density, energy density, transverse and longitudinal pressure

\

n(t) = gofdP; f(t,w,p.)
V2

80 = @ [dPL fmwp)
02

i) = o [P fmwp.)
2
w

Pi(t) = Qo fdPTTf(T,W,pL)
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Exact solution of the RTA Boltzmann equation for a massive gas
Landau matching

@ determination of effective temperature (Landau matching)

U = uTly
&(r) = &%(1)

V2
= o [P i wp.)
T

- S fne () ()

T

L
Teq

= EHPU - Prg" + (P - P2
(Eeq + Peq) U U’ = Peqg”

T re = diag(&, Pr, Pr, P1)

T e = diag(Eeq, Peq, Peq, Pea)
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Exact solution of the RTA Boltzmann equation for a massive gas
Numerical method

@ evolution equation for the temperature profile®

ot o () mia (7)] =

T0 m
D(z, To)/\A(Hz[ , 7]
Vi+& N

© o dr Nagy (T m
o Tea@) DT ”2(?7)]

@ numerical (iterative) method
1) use a trial function T’ = T(7”) on the RHS of the dynamic equation
2) the LHS of the dynamic equation determines the new T = T(t)
3) use the new T(t) as the tfrial one
4) repeat steps 1-3 until the stable T(t) is found

8Florkowski, Ryblewski, Strickland, Phys. Rev. C 88, 024903 (2013)
Florkowski, Maksymiuk, Ryblewski, Strickland, Phys. Rev. C 89, 054908 (2014)
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Results

Importance of kinetic coefficients in the second-order viscous hydrodynamics

T itre = T viseLRF Denicol, Florkowski, Ryblewski, Strickiand, Phys. Rev. € 90, 044905 (2014)
!

N= 1 [P)(0) +2P L (1) - 3Peq(v)]

1.0
0.9
~ 0.8
=07
0.6

0.5 Ay

— exact

- 14 mom.(Ajz=Ap
14 mom.(full)
2

Tp=600 MeV

m=300 MeV
Teq=0.5 fm/c

0.20
0.15
0.10
0.05
0.00
-0.05
-0.10

701 [fm ™3]

0.5 1 2 3 45 7 10
7 [fm/c]

@ 1. is extremely important for correct description of shear stress corrections (20%
discrepancy)

@ shear-bulk couplings (An; and A;n) are crucial for correct description of the bulk
viscous correction
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Results

Kinetic coefficients in 14-moment approximation and Chapman-Enskog method

Jaiswal, Ryblewski, Strickland, Phys. Rev. C 90, 044905 (2014)
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@ Chapman-Enskog method and 14-moment approximation provide slightly different
form of second-order kinetic coefficients

Radoslaw Ryblewski (IFJ PAN)

January 18, 2015

15/19



Results

14-moment approximation vs Chapman-Enskog method
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@ kinetic coefficients obtained within Chapman-Enskog method provide even better
description of bulk pressure evolution than 14-moment approximation

Radoslaw Ryblewski (IFJ PAN)

January 18, 2015

16/19



Results

Comparison with anisotropic hydrodynamics
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, Strickland, Phys. Rev. C 90, 044905 (2014)

@ anisotropic hydrodynamics better captures the P, /P behavior and describes bulk
correction as good as 14-moment formulation of second-order viscous

hydrodynamics

@ kinetic coefficients are implicitly included in anisotropic hydrodynamics
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Results

2nd order vs 3rd order viscous hydrodynamics

C.Chattopadhyay, A.Jaiswal, S.Pal, R.Ryblewski, arXiv:1411.2363
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Conclusions

@ Chapman-Enskog method was applied to derive second-order viscous
hydrodynamic equations and the associated transport coefficients for a massive gas
in RTA.

@ Exact solution of RTA Boltzmann kinetic equation was applied for testing various
hyrodynamic approximation schemes

@ It was found that:

@ commonly used Israel-Stewart formulation of second-order viscous hydrodynamics equations
do not describe early-time evolution of bulk viscous pressure and shear stress correctly
(shear-bulk couplings: Anx. Axn and 7., obtained within 14-moment approximation are
crucial)

e Chapman-Enskog method provides equations which give the best overall agreement with
exact solutions of kinetic theory equations

@ anisotropic hydrodynamics provides the best description of P, /Pt evolution thus better
captures the anisotropy in the system

o NOTE:
there are new exact solutions of the RTA Boltzmann equation now available for
conformal systems employing so-called Gubser symmmetry
Denicol, Heinz, Martinez, Noronha, Strickland, Phys. Rev. Lett. 113, 202301 (2014)
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Thank you for your attention!
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