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Motivation

1.1 Problems of thermal models with the proton yield

Statistical models have become one of the cornerstones of our understanding of
heavy-ion and elementary (e+e−, pp̄) collisions. (Becattini, Braun-Munzinger, Broniowski, Cleymans,

Gaździcki, Gorenstein, Koch, Rafelski, Redlich, Satz, Stachel, Stock, ...)

The new data from LHC do not agree with the most common version of the thermal
model for proton abundances .

Possible explanations:

hadronic rescattering in the final stage
(Becattini, Bleicher, Kollegger, Schuster, Steinheimer,

Stock, PRL 111 (2013) 082302)

hadronization and subsequent freeze-out
taking place off chemical equilibrium
(Petran, Rafelski, PRC 88 (2013) 021901; Petran, Letessier,

Petracek, Rafelski, PRC 88 (2013) 034907)

incomplete list of hadrons
(Noronha-Hostler, Greiner, 1405.7298, 1408.0761)

flavor hierarchy at freeze-out
(Chatterjee, Godbole, Gupta, PLB 727 (2013); Melo,

Tomasik, QM 2014)
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Motivation

1.2 Problems of hydrodynamic models with the pion spectra

Besides the proton anomaly, the same LHC data exhibits another interesting feature:
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The low-transverse-momentum pion spectra show enhancement by about 25%–50% with
respect to the predictions of various thermal and hydrodynamic models
(ALICE compares experimental data to various hydro models: PRL 109 (2012) 252301, PRC 88 (2013) 044910)
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2. Cracow single-freeze out model

Single-freeze out model (Broniowski, Florkowski, PRL 87 (2001) 272302 )
Monte-Carlo implementations, THERMINATOR 1 & 2 (Kisiel, Taluc, Broniowski, Florkowski, Comput. Phys.

Commun. 174 (2006) 669; Chojnacki, Kisiel, Florkowski, Broniowski, Comput. Phys. Commun. 183 (2012) 746)

The spectra are calculated from the Cooper-Frye formula at the freeze-out hyper surface

dN
dyd2pT

=

∫
dΣµpµf (p · u), t2 = τ2

f + x2 + y2 + z2, x2 + y2
≤ r2

max,

assuming the Hubble-like flow: uµ = xµ/τf .

There is only one additional parameter in the model, because the product πτf r2
max is

equal to the volume (per unit rapidity), while the ratio rmax/τf determines the slope of the
spectra.

The phase-space distribution includes all well established resonances from PDG. The
primordial distribution in the local rest frame has the form:

fi = gi

∫
d3p

(2π)3

1

Υi
−1 exp(

√
m2 + p2/T ) ± 1

, where Υi = γ
N i

q+N i
q̄

q γ
N i

s+N i
s̄

s exp
(
µBBi + µSSi

T

)
,

and N i
q , N i

s are the numbers of light (u,d) and strange (s) quarks in the ith hadron.
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Cracow single-freeze out model

2.1 Spectra of pions, kaons and protons

Chemical non-equilibrium:
V, T, γq, γs, rmax/τf
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Chemical equilibrium:
V, T, rmax/τf

10-5

1

105

0.1 1 3
0.4

0.8

1.2

1.6

0.3 1 3 0.4 1 3

30-40%
0-5%

80-90%                                                       80-90%                                                                       80-90%

D
at

a 
/ M

od
el

   
   

  d
2 N

 / 
(  2

p Tdp
T d

y)
   

[(G
eV

/c
)-2

]

  0-5%
 
 5-10%

  
10-20%

  
20-30%

  
30-40%

  
40-50%

  
50-60%

  
60-70%

70-80%
  
  
80-90%

pT [GeV/c]

 

chemical   equilibrium

30-40%

0-5%

30-40%

0-5%

  0-5%
 
 

  

  

  
30-40%

  

  

  

80-90%

  0-5%
 
 

  

  

  
30-40%

  

  

  

80-90%

 

x 1000
 
x 100
 
x 10
  
x 1
    
x 0.1
  
x 0.01

  
x 0.001

  
x 0.0001

  
x 0.00001

  
x 0.000001

       K                       p 

 

 

 

 

 

  

 

 

 

One can observe a good agreement for pions and kaons, however, protons in central
collisions are described only in non-equilibrium (V.B., Florkowski, Rybczyński, PRC (2014) 054912).
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Cracow single-freeze out model

2.2 Spectra of strange particles

Predictions for other hadrons:
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The fit done initially for π+ + π− and K+ + K− only appears also very good for p + p, K0
S ,

K∗(892)0 and φ(1020)! (V.B., Florkowski, Rybczyński, PRC (2014) 054912)
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3. Pion condensation

There is an upper bound on γq because of Bose-Einstein condensation. The fits to the
ratios of hadron abundances yield γq which is very close to the critical pion chemical
potential

µπ = 2T lnγq ' 134 MeV ' mπ0 ' 134.98 MeV

It may suggest that a substantial part of π0 mesons form the condensate. Therefore we
add the estimation for the number of π0 mesons in the χ2 fits, and take into account the
ground state with zero momentum (V.B., Gorenstein, PRC (2008), V.B. arXiv:1412.6532):

N =
∑

i

gi

exp


√

p2
i

+m2−µ

T

 − 1

'
g

exp
(m−µ

T

)
− 1

+ V
∫
∞

0

d3p
(2π)3

g

exp
( √

p2+m2−µ
T

)
− 1

= Ncond + Nnorm

Here Ncond is the number of particles in Bose condensate and Nnorm is the number of
particles in normal state.
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Pion condensation

3.1 Finite size effects in the pion gas

Bose-Einstein condensation is possible at any temperature, if the density is high enough.
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The chemical potential is always smaller than the mass in the system with a finite volume
(V.B., Gorenstein, PLB (2007), PRC (2008)).
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Pion condensation

3.2 Finite size effects in the pion gas

Counterintuitively, the fraction of particles in condensate is bigger for smaller systems.
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Fluctuations rapidly increase with increasing the fraction of particles in the condensate.
This effect is stronger for bigger volume of the system (V.B., Gorenstein, PRC (2008)).
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Onset of pion condensation at the LHC

4.1 Volume and temperature

Inclusion of the ground state into the NEQ model makes temperature closer to the EQ
model. The BEC and EQ models give the same temperature at peripheral collisions!
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EQ - equilibrium model (V.B. arXiv:1412.6532)
NEQ - non-equilibrium model, previously shown
BEC - non-equilibrium with condensate at the zero momentum level - NEW!
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Onset of pion condensation at the LHC

4.2 Non-equilibrium parameters

Inclusion of the ground state into the NEQ model makes γ’s closer to the EQ model,
especially for very peripheral collisions.
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Equilibrium model is not shown, since there γq ≡ γs ≡ 1 (V.B. arXiv:1412.6532)
NEQ - non-equilibrium model, previously shown
BEC - non-equilibrium with condensate at the zero momentum level - NEW!
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Onset of pion condensation at the LHC

4.3 Ground state contribution

The fraction of pions in the condensate is bigger than 3% and increases with centrality.
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The effect for the spectrum is within the current error bars. However, it is several times
stronger for π0 mesons, which are not measured yet.
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5. Conclusions

The non-equilibrium thermal model combined with the single freeze-out scenario
explains very well the spectra of pions, kaons, and protons

It eliminates the proton anomaly and explains the low-pT enhancement of pions

This enhancement may be interpreted as a signature of the onset of pion
condensation in heavy-ion collisions at the LHC energies

The introduction of the ground state makes a link between equilibrium and
non-equilibrium thermal models

It would be interesting to see measurement of the pion spectrum at smaller values of
pT than those available at the moment, especially for π0 mesons
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Extra slides

Problems of hydrodynamic models with the pion spectra

IP - Glasma + MUSIC:
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AdS + hydro + cascade:
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pions well described, protons?!

Hydro with dynamical freeze-out:
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(Huovinen et al., arXiv:1407.8152)
again pion enhancement!
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Extra slides

Fugacity and chemical potentials

The parameters γq and γs are equivalent to the chemical potentials µi/T = lnγi

Υi = exp

µq
(
N i

q + N i
q̄

)
+ µs

(
N i

s + N i
s̄

)
T


They are connected with the conservation of the SUM of the number of quarks and
antiquarks during the hadronization process, similarly as µB and µS are connected with
the conservation of the DIFFERENCE of the quark and antiquark numbers. (Rafelski: This must

be so, since the entropy is conserved during the hadronization process.) This is valid when the hadronization
process is fast and there is no significant volume expansion.

It can be also a result of the interplay between annihilation and recombination processes.
For example, a pp̄ annihilation to n pions would produce the relation between nucleon
and pion chemical potentials:

2µN = nµπ

Generally, n may depend on energy, however, in our case n = 3.

One can also imagine a QCD mechanism like the gluon condensation followed by the
formation of low momentum qq̄ pairs which fuse into pions which subsequently condense
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Extra slides

Spectra of pions. Linear scale

most central events
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Extra slides

Spectra of strange particles. Hyperons
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The possible sources of these discrepancies:

the thermodynamic parameters obtained when the data on multi-strange particles
were not available

unknown decays into Λ

too much flow for heavy particles which is equivalent to the emission from a smaller
volume in our model

Viktor Begun (UJK) January 18, 2015 17 / 22



Extra slides

Spectra of strange particles. Hyperons

If the Σ(1560) decay into Λ is included and the
Ξ’s and Ω’s are emitted from a smaller volume,
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then the agreement is improved. However one should re-fit the new data before making
conclusions.
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Extra slides

Spectra of pions, kaons and protons at RHIC

Dariusz Prorok, Phys.Rev. C75 (2007) 014903, the same approach but applied for RHIC

chemical non-equilibrium strangeness non-equilibrium chemical equilibrium

situation opposite to that at the LHC!
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Extra slides

The ratios

Since we describe the spectra – the corresponding ratios are described automatically:
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Extra slides

Data analysis in SHARE thermal model

M. Floris, Quark Matter 2014, arXiv:1408.6403
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Extra slides

Problems with the data

Different centrality selection for different data:
π±, K±, p, p and φ(1020) are published in 10 centrality windows,
K 0

S and Λ are published in 7 centrality windows,
Ξ± and Ω± are published in 5 centrality windows,
K ∗(892)0 is published in 4 centrality windows.

We found that the best way is to merge the data for π±, K±, p, p φ(1020), K 0
S and Λ to

the centrality set of Ξ± and Ω±
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