Event-by-Event Fluctuations in High Energy Reactions

Mark I. Gorenstein

Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

- I. Global Conservation Laws. Statistical Ensembles
- **II. Strongly Intensive Measures of Fluctuations**

III. Van der Waals Equation of State in the GCE and Particle Number Fluctuations

I. Global Conservation Laws. Statistical Ensembles *V*⊲⇒p $\gg \mu_0$ E, V, QMCE $2^3 = 8$ T, V, Q ce T,V,μ_Q gce E,V,μ_Q mgce $\begin{array}{cccc} E,p,Q & T,p,Q \\ T,p,\mu_Q & E,p,\mu_Q \end{array} \begin{array}{c} \text{M.I.G. J. Phys} \\ \text{Pressure} \\ \text{Ensembles} \end{array}$ M.I.G. J. Phys. G (2008)

GCE: $\mu = 0 \rightarrow \langle N_+ \rangle = \langle N_- \rangle$, Rafelski, Danos, Phys. Lett. B (1980) Redlich, Turko, Z. Phys. C (1980) CE: $\delta(N_+ - N_-) \rightarrow N_+ = N_$ more than 100 citations per paper <N> ω g.c.e. ω g.c.e. ω^{\pm} 0.5 0.50 0 5 5 0 10 10 \boldsymbol{Z} Z $z = \frac{V}{2\pi^2} Tm^2 K_2(m/T) = \langle N_{\pm} \rangle_{\text{gce}}; \quad \omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}; \quad \omega_{\text{gce}}[N_{\pm}] = 1$ $\frac{\langle N_{\pm} \rangle_{ce}}{\langle N_{\pm} \rangle_{gce}} = \frac{I_1(2z)}{I_0(2z)} \to 1 \qquad \omega_{ce} \left[N_{\pm} \right] = 1 - z \left[\frac{I_1(2z)}{I_0(2z)} - \frac{I_2(2z)}{I_1(2z)} \right] \to \frac{1}{2}$

Begun, Gazdzicki, M.I.G., Zozulya, Phys. Rev. C (2004)

Micro Canonical Ensemble of massless neutral particles

Comparison with the NA49 data

Pb+Pb 1% most central events

Begun, Gazdzicki, M.I.G., Hauer, Konchakovski, Lungwitz, Phys. Rev. C (2007)

Theory (standard statistical ensembles):

Begun, M.I.G., Kostyuk, Zozulya, Phys. Rev. C (2005), J.Phys. G
Begun, M.I.G., Zozulya, Phys. Rev. C (2005)
Becattini, Ferroni, Eur. Phys. J. C(2005) (2007)
Mekjian, Nucl. Phys. A (2005)
Keranen, Becattini, Begun, M.I.G., Zozulya, J. Phys. G (2005)
Cleymans, Redlich, Turko, Phys. Rev. C (2005), J. Phys. G (2005)
Becattini, Keranen, Ferroni, Gabbriellini, Phys. Rev. C (2005)
Torrieri, Jeon, Rafelski, Phys. Rev. C (2006), Nucleonics (2006)
Hauer, Phys. Rev. C (2008); Hauer, Wheaton, Phys. Rev. C (2009)
Turko, Int. J. Mod. Phys. E (2007), Phys. Part. Nucl. (2008)
Becattini, Ferroni, Eur. Phys. J. C (2007)
Torrieri, J. Phys. G (2006, 2008), Eur. Phys. J. C (2007), (2012),
Yang, Wang, Phys. Rev. C (2011, 2012)
Torrieri, Bellweid, Market, Westfall (2012)

Theory (generalized statistical ensembles):

M.I.G., Hauer, Phys. Rev. C (2008); Begun, Gazdzicki, M.I.G., Phys. Rev. C (2008, 2009) Wilk, Wlodarczyk, Physica (2011) Biro, Barnafoldi, Van, Eur. Phys. J. A (2013), Physica (2014)

Experiment:

Rybczynski et. al, NA49 Collaboration, J. Phys. Conf. Ser. (2005) Lungwitz (NA49 Collaboration) (2006, 2007) Alt, et.al. NA49 Collaboration, Phys. Rev C (2007) (2008) Center, et. al, NA61 Collaboration, Phys. Atom. Nucl. (2012) II. Strongly Intensive Measures of Fluctuations

F(V) event-by-event volume distribution

$$A \sim V$$
, $B \sim V$ Extensive Quantities

$$\Delta[\mathbf{A}, \mathbf{B}], \Sigma[\mathbf{A}, \mathbf{B}]$$

are independent of the average volume and of volume fluctuations

M.I.G., Gazdzicki, Phys Rev. C (2011)

Examples:

$$A = P_T = |p_T^{(1)}| + ... + |p_T^{(N)}|$$

 $B = N$
 $B = N_2$

Ideal Botzmann gas in the GCE with F(V) volume distribution

$$A = a_{1} + a_{2} + \dots + a_{N}, \qquad B = b_{1} + b_{2} + \dots + b_{N}$$

$$< A \gg = \overline{a} < N \gg = \overline{a} \ n < V >, \qquad < B \gg = \overline{b} < N \gg = \overline{b} \ n < V >$$

$$< A^{2} > = \overline{a^{2}} \ n < V > + \overline{a}^{2} \ \left[n^{2} < V^{2} > - n < V > \right]$$

$$< B^{2} > = \overline{b^{2}} \ n < V > + \overline{b}^{2} \ \left[n^{2} < V^{2} > - n < V > \right]$$

$$< AB > = \overline{ab} \ n < V > + \overline{a} \ \overline{b} \ \left[n^{2} < V^{2} > - n < V > \right]$$

$$\omega [A] = \frac{\langle A^2 \rangle - \langle A \rangle^2}{\langle A \rangle} = \frac{\overline{a^2} - \overline{a}^2}{\overline{a}} + \overline{a} n \frac{\langle V^2 \rangle - \langle V \rangle^2}{\langle V \rangle}$$
$$\equiv \omega [a] + \overline{a} n \omega [V]$$

$\langle AB \rangle - \langle A \rangle \langle B \rangle = (\overline{ab} - \overline{a} \overline{b}) n \langle V \rangle$ $+ \overline{a} \overline{b} n^2 (\langle V^2 \rangle - \langle V \rangle^2)$

$$\Delta[\mathbf{A},\mathbf{B}] = \frac{1}{C_{\Delta}} \left[<\mathbf{B} > \omega[\mathbf{A}] - <\mathbf{A} > \omega[\mathbf{B}] \right]$$

$$\Sigma[\mathbf{A}, \mathbf{B}] = \frac{1}{C_{\Sigma}} [\langle \mathbf{B} \rangle \ \omega[\mathbf{A}] + \langle \mathbf{A} \rangle \ \omega[\mathbf{B}] \\ - 2(\langle \mathbf{A}\mathbf{B} \rangle - \langle \mathbf{A} \rangle \ \langle \mathbf{B} \rangle)]$$

 $< C_{\Delta} >, < C_{\Sigma} > ~ \sim ~ < V >$

1

These combinations of second moments $\langle A^2 \rangle$, $\langle B^2 \rangle$, $\langle AB \rangle$ are independent of $\langle V \rangle$ and $\omega[V]$

Normalization.For the Independent Particle Model: $\Delta[A, B] = 1$ IB-GCE ; Mixed Event Model $\Sigma[A, B] = 1$

$$C_{\Delta} = C_{\Sigma} = \omega [p_T] < N > \qquad [A = P_T, B = N]$$

$$C_{\Delta} = \langle N_1 \rangle - \langle N_2 \rangle$$

$$C_{\Sigma} = \langle N_1 \rangle + \langle N_2 \rangle$$

$$\begin{bmatrix} A = N_1, B = N_2 \end{bmatrix}$$

Gazdzicki, M.I.G., Mackowiak-Pawlowska, Phys. Rev. C (2013)

$$\Phi_{P_T} = \sqrt{\overline{p_T^2} - \overline{p_T}^2} \left[\sqrt{\Sigma[P_T, N]} - 1 \right]$$

The first example of Strongly Intensive Measure

Gazdzicki, Mrowczynski, Z. Phys. C (1992) (176 citations)

Effects of Quantum Statistics M.I.G., Rybczynski, Phys. Lett. B (2014),

$$\Delta[P_T,N], \ \Sigma[P_T,N]$$
 The stro in $\Delta[P_T]$

The strongest effect is $\Delta[P_T, N]$ of pions

p+p at 158 GeV/c : There is a correlation between the inverse slope of \mathcal{M}_T -spectrum and hadron multiplicity N

 $\Delta[P_T, N] \cong 0.82, \qquad \Sigma[P_T, N] \cong 1.01 \qquad \text{M.I.G., Grebieszkow, Phys. Rev. C (2014)}$

in a good agreement with (preliminary) NA61/SHINE data in p+p reactions

Experimental results for the Δ and Σ measures:

Rustamov for the NA61/SHINE and NA49 Collaborations, arXiv:1303.5671 Anticic, et.al Phys. Rev. C (2014) Mackowiak-Pawlowska, PoS CPOD2013 (2013), J. Phys. Conf. Ser. (2014) Rybczynski, NA61/SHINE Collaboration, PoS EPS-HEP2013, arXiv:1301.3360 Mackowiak-Pawlowska, Wilczek for the NA61 Collaboration (2013) Grebieszkow, Acta Phys. Pol. (2013), PoS CPOD2013 (2013) Seyboth, arXiv:1402.4619 (2014) Stefanek, NA61/SHINE and NA49, arXiv:1411.2396 **Resonance Decays**

$$R \to \pi^+ \pi^-, \qquad \omega \left[\pi^+ \right] \cong \omega \left[\pi^- \right] \cong \omega \left[R \right] \cong 1,$$

$$\frac{<\!R\!>}{<\!\pi^+\!>\!+\!<\!\pi^-\!>} \cong \rho[\pi^+,\pi^-] \equiv \frac{<\!\pi^+\!\pi^-\!>-<\!\pi^+\!>\!<\!\pi^-\!>}{<\!\pi^+\!>\!+\!<\!\pi^-\!>}$$

Jeon, Koch, Phys. Rev. Lett. (1999) (132 citations).

$$\frac{\langle R \rangle}{\langle \pi^{+} \rangle + \langle \pi^{-} \rangle} \cong \frac{1 - \Sigma[\pi^{+}, \pi^{-}]}{2}$$

UrQMD

Pb+Pb, 5% most central
Pb+Pb, b=0

▲ p+p

 $-\frac{1}{2}\Delta y < y < \frac{1}{2}\Delta y$

rapidity interval of pion acceptance in the c.m.s.

III. Van der Waals Equation of State in the GCE and Particle Number Fluctuations

Vovchenko, Anchishkin, M.I.G. arXiv (2015)

$$p(V,T,N) = \frac{NT}{V-bN} - a\frac{N^2}{V^2} = \frac{nT}{1-bn} - an^2$$
, CE

$$T_c = \frac{8a}{27b}, \quad n_c = \frac{1}{3b}, \quad p_c = \frac{a}{27b^2}$$

$$p(V,T,N) = \frac{nT}{1-bn} - an^2, \quad \mathbf{CE}$$

$$n(T,\mu) = \frac{n_{id}(T,\mu^*)}{1+bn_{id}(T,\mu^*)}, \qquad \mu^* = \mu - b\frac{nT}{1-bn} + 2an, \quad GCE$$

$$\omega[N] \equiv \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} = \left[\frac{1}{(1-bn)^2} - \frac{2an}{T}\right]^{-1}$$

Summary

1. Global Conservation Laws

suppress particle number fluctuations and introduce interparticle correlations. This is valid also in the thermodynamic limit $V \rightarrow \infty$.

2. Strongly Intensive Measures $\Delta[A, B]$ and $\Sigma[A, B]$

are independent of the average size of the system and of the fluctuations of the size. Examples: GCE, Model of Independent Sources, Mixed Events,....

3. Van der Waals Equation of State and Particle Number Fluctuations

provides an analytical example of the fluctuations in systems with 1st order liquid-gas phase transition and critical point.

Thank you!

III. Fluctuations with Incomplete Particle Identifications

Gazdzicki, Grebieszkow, Mackowiak, Mrowczynski, Phys. Rev. C (2011) M.I.G., Phys. Rev. C (2011); Rustamov, M.I.G., Phys. Rev. C (2012) $\rho_i(m)$ do not overlap

 $N_{\rm ev}$ is the number of events

In the case of complete identifications: $W_i = N_i$,

$$< W_j^2 > = < N_j^2 >, < W_p W_q > = < N_p N_q >$$

$$\begin{split} &\sum_{i=1}^{k} < N_{i}^{2} > u_{ji}^{2} + 2 \sum_{1 \le i < l \le k} < N_{i}N_{l} > u_{ji}u_{jl} = b_{j} \\ &\sum_{i=1}^{k} < N_{i}^{2} > u_{pi}u_{qi} + \sum_{1 \le i < l \le k} < N_{i}N_{l} > (u_{pi}u_{ql} + u_{pl}u_{qi}) = b_{pq} \\ &u_{ji}^{s} \equiv \frac{1}{} \int dm \, w_{j}^{s}, \quad u_{pqi} \equiv \frac{1}{} \int dm \, w_{p} \, w_{q} \, \rho_{i}(m) \\ &b_{j} \equiv -\sum_{i=1}^{k} < N_{i} > [u_{ji}^{2} - (u_{ij})^{2}], \\ &b_{pq} \equiv -\sum_{i=1}^{k} < N_{i} > [u_{pqi} - u_{pi}u_{qi}] \\ &< N_{j}^{2} >, \quad j = 1, \dots, k \qquad , \quad 1 \le p < q \le k \end{split}$$

The system of k+k(k-1)/2 linear equations

$$< N_{1}^{2} > = \frac{b_{1}u_{22}^{2} + b_{2}u_{12}^{2} - 2b_{12}u_{12}u_{22}}{(u_{11}u_{22} - u_{12}u_{21})^{2}}$$

$$< N_{2}^{2} > = \frac{b_{2}u_{11}^{2} + b_{1}u_{21}^{2} - 2b_{12}u_{21}u_{11}}{(u_{11}u_{22} - u_{12}u_{21})^{2}}$$

$$< N_{1}N_{2} > = \frac{b_{12}(u_{11}u_{22} + u_{12}u_{21}) - b_{1}u_{22}u_{21} - b_{2}u_{11}u_{22}}{(u_{11}u_{22} - u_{12}u_{21})^{2}}$$

Experimental results for fluctuations with the identity method:

Rustamov for the NA61/SHINE and NA49, J. Phys. Ser. and arXiv:1303.5671 Anticic, et.al, Phys. Rev. C (2013, 2014) Mackowiak-Pawlowska, PoS CPOD2013 (2013), J. Phys. Conf. Ser. (2014) Grebieszkow, Acta Phys. Pol. (2013), PoS CPOD2013 (2013) Seyboth, arXiv:1402.4619 Stefanek, NA61/SHINE and NA49, arXiv:1411.2396

Summary

1. Global Conservation Laws

suppress particle number fluctuations and introduce interparticle correlations. This is valid also in the thermodynamic limit $V \rightarrow \infty$.

2. Strongly Intensive Measures $\Delta[A, B]$ and $\Sigma[A, B]$

are independent of the average size of the system and of the fluctuations of the size. Examples: GCE, Model of Independent Sources, Mixed Events,....

3. Identity Method

provides the values of all the second and higher moments of identified particle number distributions in a model independent way for the case of incomplete particle identifications. Thank you!

Additional Slides

Line of the chemical freeze-out

15.01.2015

Mark Gorenstein

Hadron-Resonance Gas

Begun, Gazdzicki, M.I.G., Hauer, Konchakovsi, Lungwitz, Phys. Rev. (2007)

Micro Canonical Ensemble with scaling Volume Fluctuations (MCE/sVF)

$$\mathbf{P}_{\alpha}(\mathbf{X};\mathbf{E}) = \int_{0}^{\infty} d\mathbf{V} \ \mathbf{P}_{\alpha}(\mathbf{V}) \ \mathbf{P}_{mce}(\mathbf{X};\mathbf{E},\mathbf{V})$$

Begun, Gazdzicki, M.I.G., Phys. Rev. C (2008) and (2009)

$$P_{\alpha}(V) = \frac{1}{\overline{V}} \Phi_{\alpha}(V/\overline{V})$$
 Scaling volume fluctuations selected to fit experimental multiplicity distribution

- 1) Describes the KNO-scaling of multiplicity distribution
- 2) Gives the Power Law of (transverse) momentum spectra

Multiplicity distribution in the MCE/sVF

Mark Gorenstein

Power law in momentum spectrum

Mark Gorenstein

Relation to Other Measures

$$\Phi = \frac{\sqrt{\langle A \rangle \langle B \rangle}}{\langle A \rangle + \langle B \rangle} \begin{bmatrix} (\Sigma^{AB})^{1/2} & -1 \end{bmatrix} \quad \begin{array}{c} \text{Gazdzicki,} \\ \text{Mrowczynski (1992)} \end{array}$$

$$u_{\mathrm{dyn}}^{\mathrm{AB}} = rac{\langle \mathrm{A}(\mathrm{A}-1) \rangle}{\langle \mathrm{A} \rangle^2} + rac{\langle \mathrm{B}(\mathrm{B}-1) \rangle}{\langle \mathrm{B} \rangle^2} - 2 \; rac{\langle \mathrm{AB} \rangle}{\langle \mathrm{A} \rangle \langle \mathrm{B} \rangle}$$

Pruneau, Gavin, Voloshin (2002)

$$v_{dyn}[A,B] = \frac{\langle A+B \rangle}{\langle A \rangle \langle B \rangle} [\Sigma[A,B]-1]$$

$\sqrt{s_{NN}}$	Т	μ_B	$\rho[\pi^+,\pi^-]$	$\omega[\pi^+]$	$\omega[\pi^-]$	$\Sigma[\pi^+,\pi^-]$	$\langle R_{\pi\pi} \rangle / (\langle \pi^- \rangle + \langle \pi^+ \rangle)$		
[GeV]	[MeV]	[MeV]	GCE	GCE	GCE	GCE	Eq.(47)	Eq.(41)	Eq. (42)
6.27	130.8	482.4	0.132	1.063	1.074	0.804	0.11	0.14	0.10
7.62	139.2	424.6	0.155	1.072	1.083	0.768	0.13	0.16	0.12
8.77	144.2	385.4	0.170	1.079	1.089	0.744	0.14	0.17	0.13
12.3	153.0	300.2	0.199	1.092	1.101	0.699	0.15	0.20	0.15
17.3	158.6	228.6	0.219	1.102	1.109	0.668	0.16	0.22	0.17
200	165.9	23.5	0.246	1.116	1.117	0.624	0.17	0.25	0.19
5500	166.0	0.87	0.246	1.117	1.117	0.624	0.17	0.25	0.19

$\Sigma[P_T, N] \cong 1.01,$ $\Delta[P_T, N] \cong 0.82$

p+p at 158 GeV/c

M.I.G., Grebieszkow, Phys. Rev.C (2014)

NA61/SHINE data in p+p reactions

