

aliceinfo.cern.ch

ALICE Overview

Jacek Otwinowski for the ALICE Collaboration

11-th Polish Workshop on Relativistic Heavy-Ion Collisions 17-18 January 2015, Warsaw University of Technology

Institute of Nuclear Physics Polish Academy of Sciences

jacek.otwinowski@ifj.edu.pl

ALICE measurements in pp, p-Pb and Pb-Pb collisions

Soft QCD and pQCD and jet fragmentation in vacuum. Reference for p-Pb and Pb-Pb.

Initial state effects (shadowing/ gluon saturation). Collective effects. Reference for Pb-Pb.

Thermal particle production, collectivity, recombination, jet quenching and fragmentation in the quark-gluon plasma (QGP).

Today correlation measurements with main focus on p-Pb

A Large Ion Collider Experiment

- Excellent particle identification capabilities in a large p_{T} range 0.1-20 GeV/c
- Good momentum resolution ~1-5% at $p_{T} = 0.1-50 \text{ GeV}/c$

Event centrality/multiplicity selection in p-Pb

At the LHC, the correlation between geometry and track multiplicity (Glauber model) in p-Pb is not as straightforward as in Pb-Pb (ALICE, arXiv:1412.6828)

Event centrality selection based on track multiplicity in VZERO-A detector (2.8<η<5.1) – Pb-side</p>

Double ridge in high multiplicity p-Pb collisions

Double ridge: Long range h-h angular correlations.

ALICE: Phys. Lett. B719 (2013) 29

3

 $\Delta \phi$ (rad)

$2 < p_{T,trig} < 4 \text{ GeV}/c$ p-Pb √s_{NN} = 5.02 TeV Projection on $\Delta \phi$. $1 < p_{T.assoc} < 2 \text{ GeV}/c$ (0-20%) - (60-100%) Double ridge p-Pb √s_{NN} = 5.02 TeV 0.88 Data $a_n + 2a_2 \cos 2\Delta \phi + 2a_2 \cos 3\Delta \phi$ (0-20%) - (60-100%) $a_n + 2a_n \cos 2\Delta \phi$ $2 < p_{T,trig} < 4 \text{ GeV/}c$ 0.86 **Baseline for yield extraction** <p____ < 2 GeV/c **HIJING shifted** 0.84 ے بی ج 2 0.78 3 AQ (rad) 2 0.76 -1 2 ALI-PUB-46250 ALI-PUB-46246

 v_2 and v_3 flow components.

Also seen in Pb-Pb and high multiplicity pp collisions by CMS and ATLAS.

Collective flow: Bożek & Broniowski (Phys. Lett. B718 (2012) 4)

Qualitatively similar to Pb-Pb:

 \rightarrow Indication of collective flow in high multiplicity p-Pb

v_2 of identified particles from the ridge in p-Pb

ALICE, Phys. Lett. B726 (2013) 164

Flow coefficient v_2 vs. p_T for identified hadrons from the ridge shows hierarchy in mass at low p_T .

v₂ of identified particles from the ridge in p-Pb

Flow coefficient v_2 vs. p_T for identified hadrons from the ridge shows hierarchy in mass at low p_T .

Qualitatively similar to Pb-Pb: → Indication of collective flow in high multiplicity p-Pb

Jet-like two particle correlations in p-Pb

Double ridge projection on the $\Delta \phi$.

ALICE, Phys. Lett. B 741 (2015) 38

ALI-PUB-85817

17/01/2015

Jet-like two particle correlations in p-Pb

Yields in the jet-like peaks are invariant with event multiplicity (except small multiplicity)
 → Jet production via incoherent fragmentation of multiple particle-particle interactions
 → Ridge structure is not jet-related

ALICE, Phys. Lett. B 741 (2015) 38

Multiparticle azimuthal correlations in p-Pb and Pb-Pb

Multiparticle particle correlation (cumulants) c_n (different sensitivity to fluctuations and nonflow contribution) $c_n{2} = c_n(4) = c_n{6}$, if no fluctuations and nonflow contribution

- Second harmonic cumulants are larger in Pb-Pb than in p-Pb at high multiplicities
 →larger eccentricity of Pb-Pb initial state
- $v_2\{2, \Delta \eta | > 1.4\}$ rises with multiplicity \rightarrow indication of collective flow rather than fewparticle correlations
- Third harmonic two-particle cumulants are similar in p-Pb and Pb-Pb for overlapping multiplicities for $|\Delta\eta| > 1.4 \rightarrow similar$ third harmonic eccentricities

Three pion Bose-Einstein correlations (small non-femtoscopic background) Comparison for similar multiplicity events in pp, p-Pb and Pb-Pb.

 $C_3(p_1, p_2, p_3) = \alpha_3 \frac{N_3(p_1, p_2, p_3)}{N_1(p_1)N_1(p_2)N_1(p_3)} \qquad Q_3 = \sqrt{q_{12}^2 + q_{31}^2 + q_{23}^2}$ ALICE: Phys. Lett. B 739 (2014) 139 . 1 1 0 1 1 0 p-Pb $\sqrt{s_{NN}}$ =5.02 TeV p-Pb $\sqrt{s_{NN}}$ =5.02 TeV $\langle N_{ch} \rangle = 23 \pm 1$ $\langle N_{cb} \rangle = 71 \pm 4$ Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV pp √s=7 TeV $\langle N_{\rm ab} \rangle = 27 \pm 1$ $\langle N_{cb} \rangle = 84 \pm 4$ 0.16<K_{T.3}<0.3 GeV/c 0.16<K_{T3}<0.3 GeV/c - Gaussian Gaussian - Edgeworth Edgeworth Exponential Exponential 0.2 0.2 0.1 0.1 Q_3 (GeV/c) Q_2 (GeV/c) ALT-PUB-67729

From comparison of radii extracted from Edgeworth fit:

- R_{inv} (pp) < R_{inv} (pPb) ~ 5-15% (disfavor models with stronger collective expansion in p-Pb, consistent with CGC (Bzdak et al. Phys. Rev. C 87 (2013) 064906))
- R_{inv} (pPb) < R_{inv} (PbPb) ~ 35-55% (stronger expansion or different initial conditions in Pb-Pb compared to p-Pb)

Low- p_{T} hadron production in p-Pb vs. models

p-Pb high multiplicity events

Blast-wave

• Hydro inspired model

EPOS LHC

- hard/soft scattering contribute to jet/bulk
- bulk matter described with hydro
 Kraków
- initial conditions from Glauber MC
- viscous hydrodynamic expansion
- statistical hadronization at freeze-out
 DPMJET
- QCD-inspired model based on Gribov-Glauber approach
- reproduces $dN_{ch}/d\eta$ in NSD p-Pb

Hydro models reasonably well describe data in p-Pb \rightarrow indication of flow

ALICE

Identified hadrons at low p_{T} vs. multiplicity

Blast-wave comparison of pp, p-Pb and Pb-Pb

- pp, p-Pb and Pb-Pb data in multiplicity bins
- pp PYTHIA8 in multiplicity bins

Published p-Pb and Pb-Pb results: ALICE, Phys. Lett. B 728 (2014) 25

- $T_{\rm kin}$ kinetic freeze-out temperature
- $<\beta_T>$ average transverse velocity
- Similar evolution of the blast-wave parameters with increasing multiplicity

PYTHIA8 pp events (no hydrodynamic evolution) also show the same trend

 Color reconnection causes similar effect as flow

NB: Multiplicity selection introduces bias on p_T spectra in pp and p-Pb.

Baryon to meson ratios

Baryon to meson ratio increases with multiplicity

- p-Pb: flow like effect?
- Pb-Pb: flow and coalescence

ALICE, Phys. Lett. B728 (2014) 25 ALICE, Phys. Lett. B736 (2014) 196

$R_{\rm pPb}$ for identified hadrons

$$R_{pPb} = \frac{1}{\left\langle N_{coll} \right\rangle} \frac{dN_{pPb} / dp_T}{dN_{pp} / dp_T}$$

p-Pb (minimum bias, NSD)

- Low p_T < 2 GeV/c: depletion similar for all particle species
- Intermediate 2 < p_T < 7 GeV/c: enhancement for protons and Xi (mass hierarchy)
 → flow like effect
- High p_T > 7 GeV/c: R_{pPb} ~ 1 (no modification)

Summary and Outlook

- Flow like effects observed in high multiplicity p-Pb collisions
 - Double ridge from bulk of the matter
 - Mass hierarchy in v₂
 - Second and third harmonic cumulants
 - p_T spectra reasonable described within hydro models
 - Baryon to meson ratios

However

- Color reconnection also introduces flow like effects in pp collisions
- Freeze-out radii of p-Pb system only 15% larger than of pp system
- No suppression of high-p_T hadron production in p-Pb

What is the nature of collectivity in pp and p-Pb collision compared to Pb-Pb?

BACKUP

Charged particle p_T spectra in p-Pb

p-Pb min. bias, non-single diffractive (NSD)

- $p_{\rm T}$ range: 0.15 50 GeV/c
- 3 pseudorapidity ranges
- η_{cms} = η 0.465 using Jacobian (dy/dη) with measured identified hadrons (π, K, p) by ALICE
- pp reference at Vs_{NN} = 5.02 TeV constructed from pp at 2.76 and 7 TeV (no pp measurement available at this energy)

ALICE, Eur. Phys. J. C74 (2014) 3054

R_{pPb} at very high p_T

- Surprising enhancement at very high- p_T measured by CMS and ATLAS
- ALICE data shows different trend difference mostly in pp reference

→ Necessity to measure pp reference at $\sqrt{s_{NN}} = 5.02$ TeV!

Enhancement at very high p_{T} not seen for jets \rightarrow Modification of fragmentation function?

ALICE, Eur. Phys. J. C74 (2014) 3054 CMS-PAS-HIN-12017 ATLAS-CONF-2014-029

Pions, kaons and protons in p-Pb

- Harder spectra with increasing multiplicity and with increasing particle mass
- Flattening of proton spectra at low p_{T} with increasing multiplicity \rightarrow indication of flow

Results for low p_T : ALICE, Phys. Lett. B728 (2014) 25

Comparison to hydro models

p/π ratio in pp collisions

Ortiz et al. Phys. Rev. Lett. 111 (2013) 042001

Maximum in proton to pion ratio ~3 GeV/c in PYTHIA related to color reconnection

Baryon-meson "anomaly"

Ratios of hadrons with different mass

- Baryon to meson ratio increasing with centrality for $p_T < 8 \text{ GeV}/c$
- Similar baryon to meson ratio in peripheral Pb-Pb and pp collisions
- For $p_T > 8 \text{ GeV}/c$ no dependence on centrality and collision system

Baryon-meson "anomaly" vs. models

- Hydro models (**Kraków, HKM, VISH2+1**): good agreement at low $p_T < 2$ GeV/c
- Recombination models (Fries et al.): work for $p_T > 3-5$ GeV/c

EPOS best agreement with data at whole p_{T} range:

- Hydro at low p_{T}
- Medium modified jet fragmentation at intermediate $p_{\rm T}$
- Vacuum jet fragmentation at high $p_{\rm T}$

Shadowing / Gluon Saturation

- Nuclear modification of the parton distribution functions
 - Parton distribution in nucleus differs from that in hadron

р

Pb

- shadowing
- antishdowing

Nuclear Parton Distribution Functions – EPS09

NLO fits to measured data Salgado et al. JHEP 0904:065,2009

Nuclear modification factors

$$R_{PbPb} = \frac{1}{\left\langle N_{coll} \right\rangle} \frac{dN_{PbPb} / dp_T}{dN_{pp} / dp_T}$$

 N_{coll} from Glauber MC $R_{PbPb} = 1$ (no modification)

Pb-Pb (central collisions)

- No modification of W, Z and γ boson production
- Strong hadron suppression at high p_T (R_{PbPb}~ 0.2-0.5)

p-Pb (minimum bias, NSD):

• Depletion at low p_{T}

Confirmed with jet

measurements

- No modification at high $p_{T}(R_{pPb} \sim 1)$
- → Particle suppression in Pb-Pb related to final state effects

ALICE, Eur. Phys. J. C74 (2014) 3054

$< p_T > vs. N_{ch}$: data vs. MC models

Comparison with model predictions

- PYTHIA8 with color reconnection (CR) consistent with pp data → coherent MPIs
- **EPOS** (collective effects) describes pp and is consistent with p-Pb
 - Is it related to color reconnection?
- Glauber MC (incoherent superposition of nucleon-nucleon collisions) does not describe p-Pb and Pb-Pb data

ALICE, Phys. Lett. B727 (2013) 371

17/01/2015

$\langle p_T \rangle$ vs. N_{ch} : data vs. saturation models

Scaling with transverse area S_T based on Color Glass Condensate (CGC) model [McLerran et al., Nucl. Phys. A916 210 (2013)] Works but with tension for pp and p-Pb

Good data description

17/01/2015

IDENTIFIED HADRONS

Double ridge in high multiplicity p-Pb collisions

Double ridge: Long range h-h angular correlations.

ALICE: Phys. Lett. B719 (2013) 29

- Also seen in Pb-Pb and high multiplicity pp collisions by CMS and ATLAS.
- Collective flow: Bożek & Broniowski (e.g. Phys. Lett. B718 (2012) 4)

Qualitatively similar to Pb-Pb: → Indication of collective flow in high multiplicity p-Pb

Gaussian fit

ALICE: Phys. Lett. B 739 (2014) 139

Edgeworth fit

Exponential fit

ALICE: Phys. Lett. B 739 (2014) 139

Comparison to CGC (IP Glasma)

ALICE: Phys. Lett. B 739 (2014) 139

Three pion Bose-Einstein correlations (signal less $C_3(p_1, p_2, p_3) = \alpha_3 \frac{N_3(p_1, p_2, p_3)}{N_1(p_1)N_1(p_2)N_1(p_3)}$ susceptible to non-femtoscopic background)

Multiparticle azimuthal correlations in p-Pb and Pb-Pb

Multiparticle particle correlation (cumulants) c_n have different sensitivity to fluctuations and nonflow contribution. $c_n{2} = c_n{4} = c_n{6}$ (if no fluctuations and nonflow contribution)

 $v_n\{2\} = \sqrt{c_n\{2\}},$ $v_n\{4\} = \sqrt[4]{-c_n\{4\}},$ $v_n\{6\} = \sqrt[6]{\frac{1}{4}c_n\{6\}}.$

- Second harmonic cumulants are larger in Pb-Pb than in p-Pb at high multiplicities.
- For very high multiplicity Pb-Pb collisions $c_2(4)$ and $c_2(6)$ consistent with zero.

Multiparticle azimuthal correlations in p-Pb and Pb-Pb

Multiparticle particle correlation (cumulants) c_n have different sensitivity to fluctuations and nonflow contribution. $c_n{2} = c_n{4} = c_n{6}$ (if no fluctuations and nonflow contribution)

$v_n\{2\} = \sqrt{c_n\{2\}},$ $v_n\{4\} = \sqrt[4]{-c_n\{4\}},$ $v_n\{6\} = \sqrt[6]{\frac{1}{4}c_n\{6\}}.$

Third harmonic two-particle cumulants are similar in p-Pb and Pb-Pb for overlapping multiplicities for $|\Delta \eta| > 1.4$.

Third harmonic two-particle cumulants

ALICE, Phys. Rev. C 90, 054901 (2014)