## Collective flow in <sup>3</sup>He-Au collisions

Piotr Bożek

with Wojtek Broniowski



Piotr Bożek <sup>3</sup>He-Au

æ

< ≣ >



Snellings 2011

larger gradient and stronger flow in-plane -  $v_2 > 0$  - elliptic flow

$$rac{dN}{d\phi} \propto 1 + 2 v_2 cos(2\phi)$$

 $\epsilon_2 + \mathrm{HYDRO}\ \mathrm{RESPONSE}\ \longrightarrow\ \mathrm{v}_2$ 

Event Plane (Reaction plane) must be reconstructed in each event

### Initial profile



 $Glauber \leftrightarrow fKLN$ fluctuating initial density

- $\rightarrow$  larger eccentricity
- $\rightarrow$  fluctuating eccentricity
- $\rightarrow$  triangular deformation  $\epsilon_3$



triangular flow - event by event



# $v_2$ in pPb and PbPb



v<sub>2</sub> shows similar shape in pPb and PbPb, but is smaller in pPb

 $v_2$ {4} is only 20% smaller than  $v_2$ {2} below 2 GeV/c

"Peripheral subtraction" has small effect at high multiplicity



Gunther Roland

RBRC Workshop, Apr 15-17, 2013

Piotr Bożek

<sup>3</sup>He-Au





#### d-Au at 200GeV





æ

イロン イヨン イヨン イヨン

PHENIX, arXiv:1303.1794

#### large eccentricity - large elliptic flow

### small on big collisions



PHENIX proposal  $\rightarrow v_3$ , Sickles et al. arXiv:1401.2432



 $\alpha$  clusters in <sup>12</sup>C Broniowski, Arriola arXiv:1312.0289



PB, arXiv:1112.0912

strong effect for d-A intrinsic deformation dominates over fluctuations

some effect for  $v_3$  in <sup>3</sup>*He*-*A*,

Nagle et al. arXiv:1312.4565

-≣->

### Triangular flow in <sup>3</sup>He-Au



-strong  $v_2$  in d-Au and <sup>3</sup>He-Au -strong  $v_3$  in <sup>3</sup>He-Au

- observed  $v_3 \longrightarrow$  collectivity
- hierarchy of v<sub>2</sub> and v<sub>3</sub> consisent with collective response on fireball geometry
- ▶ large v<sub>2</sub> in He-Au (?)

### <sup>3</sup>He configurations





- large  $\epsilon_2$
- even larger after projection
- broad distribution of  $\epsilon_3$
- after projection  $\epsilon_3 \simeq 0.6$

<sup>3</sup>He-Au fireball



strong ellipticity !! explains observed large  $v_2$  significant triangularity  $\longrightarrow$  observable  $v_3$ 

### $\epsilon_2$ , $\epsilon_3$ hierarchy



linear hydrodynamic response  $\longrightarrow$  EXPERIMENT

$$v_n = \kappa \epsilon_n$$

#### observable senisitive to triangular geometry



- ratio  $v_3{4}/v_3{2}$  nonmonotonic
- fluctuations  $v_3\{4\}/v_3\{2\} \longrightarrow 0$
- geometry  $v_3{4}/v_3{2} \longrightarrow 1$

### Summary

- collectivity in p-A, d-A, <sup>3</sup>He-A
- hierarchy of  $v_2$  and  $v_3$  consistent with fireball geometry
- observed effect dynamical response to geometry
- ▶  $v_3$ {4}/ $v_3$ {2} observable to look for geometric triangularity