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ACTIVATION DETECTORS: introduction

• The method consists in measuring  the induced activity of a target exposed to a neutron 
field and relating it to the neutron fluence rate.
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ACTIVATION DETECTORS: basic principles

• The reaction rate (s-1) is related to the neutron fluence rate by:

• where:  

• is the total number of nuclei inside the target, NAV is the Avogadro number, AW the atomic 
weight and W the target weight.
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ACTIVATION DETECTORS: thermal and epithermal neutrons

• The following simplified method assumes that, 

• for thermal neutrons

• where v is the neutron velocity, v0 the neutron velocity @ 0.025 eV (22o0 m s-1), 
σ0 is the neutron cross section @ 0.025 eV;

• and, for epithermal neutrons:

(1/E slowing-down  behaviour)

• where  Φepi is the epithermal fluence  rate per unit ln(E) 
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ACTIVATION DETECTORS: thermal and epithermal neutrons

• the  reaction rate R can be written as:

• where:

is the resonance integral (barn)

• Φ0 is the neutron fluence rate defined as the thermal neutron density times the 
2200 m s-1 neutron velocity.
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ACTIVATION DETECTORS: thermal and epithermal neutrons

• The  expression in the previous slide is valid for an infinitely thin target:

• but  an activation target shows a given thickness and the reaction rate expression must be 
corrected for the fluence rate depression factors, Gth and Gepi

epiTOTepiTOTth RINGNGR  00

Φ Φ

• Gth and Gepi depend on the target material 
and thickness

Target 

thickness 

(mg cm-2)

Gold Indium

Gth Gepi Gth Gepi

5 0.995 0.763 0.987 0.649

7.5 0.994 0.698 0.981 0.573

10 0.992 0.645 0.976 0.519

20 0.985 0.521 0.956 0.400

40 0.969 0.410 0.924 0.294
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ACTIVATION DETECTORS: thermal and epithermal neutrons

• The thermal neutron component can be discriminated by the epithermal one with a 
cadmium cover;

• cadmium cut-off @  0.5 eV
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ACTIVATION DETECTORS: target reaction rate and activity

• By neglecting:

• neutron capture on already activated nuclei;

• the target burn-up;

• The number of  activated nuclei during irradiation is:

• At the end of irradiation (@ time tirr):

• The induced activity at the end of irradiation is:
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ACTIVATION DETECTORS: target reaction rate and activity

• After a waiting time tw (the time from the end of irradiation up to the beginning of counting):

• The total counts acquired from tw up to tmeas (i.e. counting time tmeas) are:

• If λtmeas<<1:
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ACTIVATION DETECTORS: target reaction rate and activity

• The reaction rate is assessed by measuring the saturation activity of the activated 
material (gamma rays with a NaI(Tl) or a Ge detector, β- particles with a GM 
detector):

• Where b is the branching ratio and ε is the detector (peak) efficiency.
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• If a bare and a cadmium covered target are used to 
separate the thermal and the epithermal components, the 
cadmium correction factor FCd should be used;

• since cadmium is not completely transparent to 
epithermal neutrons.

• where Cepi are the counts due to epithermal neutrons 
to be subtracted from the counts from the bare target 
and CCd are the counts from the Cd-covered target.

• FCd depends on the thickness of the target material 
and of the Cd cover. F
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ACTIVATION DETECTORS: target reaction rate and activity

• The specific saturation activities should be subtracted for obtaining that due to 
thermal neutrons only:

• where Wbare and WCd are the weights of the bare and Cd-covered target, 
respectively.

• Finally, for estimating Φ0 and Φepi:

• It should be remembered that in the epithermal region:
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ACTIVATION DETECTORS: target materials for thermal and 

epithermal neutron detection

• Main activation reactions for thermal neutron detection:


197Au(n,)198Au: T1/2=2.69 d, σ(0.025 eV)=98.5 b;


115In(n,)116mIn: T1/2=54.15 min, σ(0.025 eV)=157 b;

 Other materials: Dy, Co, Cu, Ag.

Gold Indium

Half-life 2.695 d (198Au) 54.15 min (116mIn)

σ0 (0.025 eV) 98.8 b 157 b

RI 1560 b 2600 b
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ACTIVATION DETECTORS: gold and indium foils

Au-198 and In-116m decay schemes with branching ratios (in brackets)
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ACTIVATION DETECTORS: fast neutrons

• Several threshold reactions can be exploited, e.g.:


58Ni(n,p)58Co Eth = 1.9 MeV


59Co(n,)56Mn Eth = 5.2 MeV


54Fe(n,p)54Mn Eth = 2.2 MeV


58Ni(n,2n)57Ni Eth = 13.0 MeV


115In(n,n’)115mIn Eth = 0.339 MeV


32S(n,p)32P Eth = 2.0 MeV


12C(n,2n)11C Eth = 20 MeV


27Al(n, )24Na Eth = 4.9 MeV


27Al(n, p)27Mg Eth = 3.8 MeV

• The neutron spectrum can be reconstructed from the saturation activities 
assessed with a set of activation foils;

 The reaction cross section against energy (the “detector response”) must 
be known for this purpose.
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ACTIVATION DETECTORS: high-energy hadrons

• The hadron fluence above about 20 MeV can be assessed through the 
activation of 11C (x-sec20 mb, slightly dependent on hadron energy), i.e. for 
neutrons through the reaction:


12C(n,2n)11C Eth = 20 MeV T1/2=20.5 min

• A plastic scintillator is exposed to the hadron field and

 the 11C activity is measured by coupling the scintillator to a PM and by 
counting the positrons emitted by 11C decay.



16

SUPERHEATED EMULSIONS

• “Superheated emulsion” is the name adopted by ISO 
and ICRU for detectors based on a superheated 
liquid suspended in a gel, also known as bubble 
detectors or superheated drop detectors.

 The suspended droplets consist of an over-
expanded halocarbon and/or hydrocarbon which 
vaporizes upon exposure to the high-LET recoils
from neutron interactions. 

 The superheated emulsion is contained in a vial 
and acts as a continuously sensitive, miniature 
bubble chamber.

 The total number of bubbles evolved from the 
radiation-induced nucleation of drops gives an 
integrated measure of the total neutron 
exposure.

Courtesy of F. d’Errico, Yale Univ. and DMNP Pisa Univ.
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SUPERHEATED EMULSIONS

 Bubbles can be counted either optically (by 
eye) of through an acoustic transducer 
transforming the micro-explosion following 
bubble formation into an electronic signal.

P.K. Mondal et al. Nucl.Instrum.Meth. A729 (2013) 182-187
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SUPERHEATED EMULSIONS

• Superheated emulsions are currently used either as 
personal and environmental dosemeters or as 
neutron spectrometers.

 Neutron spectrometry is performed by exploiting 
the different response to neutron energy against 
temperature or pressure of the superheated 
liquid.

 Dosemeters: one of their advantages is the 
possibility of determining an average ambient 
dose equivalent rate in a pulsed neutron field. 

 They are completely insensitive to low-LET 
radiation, X and  rays as well as muons, which 
is a clear advantage when measuring the 
neutron component in mixed fields.
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SUPERHEATED EMULSIONS

• The H*(10) response is underestimated for 
epithermal neutrons (up to about 100 keV) and is 
fairly accurate in the neutron energy interval from 
100 keV up to about 10 MeV.
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SUPERHEATED EMULSIONS

• The response to higher energies was measured by 
irradiating bubble detectors with quasi-
monoenergetic neutrons in the energy interval 46-
133 MeV. The results showed a significant 
underestimate of the H*(10) (d’Errico et al. RPD 100 
(2002) 529-532).

• Measurements were also performed in the mixed 
field of high-energy radiation available at CERF. An 
underestimation of about 40% with respect to the 
reference ambient dose equivalent was observed in 
that experiment (Mitaroff et al., RPD 102 (2002) 7-
22).

• Measurements in high-energy neutron fields
generated by various types of hadron beams 
performed at CERN showed that bubble detectors 
underestimate the H*(10) by a factor 0.4-0.7
depending on the neutron spectrum (Agosteo et al. 
Health Phys. 75 (1998) 619-629).

Detector Ambient dose equivalent rate (µSv h-1)

front NA44 side NA44 dump NA45 NA45

LINUSsph,UMi 21.2±0.2 22±1 227±22 108±10

bubble detectors 19±4 13±1.5 210±44 78±6
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SUPERHEATED EMULSIONS

• The possibility of extending the response of bubble 
detectors to HE neutrons was investigated by 
exposing the dosemeters inside lead converters of 
varying thickness at the CERF facility.

 MC simulations showed that, as the thickness of 
the lead converter increases, a growing number 
of evaporation neutrons are generated by the 
high-energy component of the neutron field, 
thus enhancing the detector sensitivity.

 This behaviour was confirmed experimentally. 
The comparison with the reference H*(10) 
indicates that the required thickness of the lead 
converter is in the interval 1-1.5 cm.
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SUPERHEATED EMULSIONS: OPTICAL BUBBLE COUNTING

• The application of large volume detector chambers for the 
three-dimensional dosimetry of brachyterapy implants 
lead to study novel position-sensitive systems for 
assessing the bubble spatial distribution.

 Optical tomography was proposed by d’Errico et al, 
2008 for this purpose.

• The satisfactory results obtained with this technique lead 
to apply scattered light for bubble counting of 
superheated emulsions for individual dosimetry (d’Errico 
et al, 2008).

• The dosemeter is placed in a light-shielded enclosure and 
illuminated from the bottom by LEDs (light-emitting 
diodes). The light scattered by the bubbles is detected by 
photodiodes positioned along the detector wall.

• A very good linearity of the response (photodiode voltage 
against number of bubbles) of this system was observed. 

• The uniformity in size of the drops suspended in the gel 
was found to be of primary importance for a smooth 
behaviour of the system. This feature is guaranteed by 
the manufacturing technique for the superheated 
emulsions which is capable of providing drops with size in 
the range 50-150 m with a dispersion lower than 10%.

Photodiode

LED

Adapted from:

d’Errico, F., Di Fulvio, A., Mariañski, M. , Selici, S., Torriginai, M.,

Radiation Measurements 43 (2008) 432-436.


